The Biodiversity Cell Atlas: mapping the tree of life at cellular resolution

  • Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • C. elegans Sequencing Consortium.Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Initiative, T. A. G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, P. F. et al. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science 380, eabn2937 (2024).

    Article 

    Google Scholar
     

  • Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, S. D., Pennell, M. W., Dunn, C. W. & Edwards, S. V. Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35, 415–425 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell 83, 373–392 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oliver, S. G. From DNA sequence to biological function. Nature 379, 597–600 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9, 868–882 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Meth. Primers 1, 10 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, T. A. et al. A single-nucleus atlas of seed-to-seed development in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.533992 (2023).

  • Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 188, 550–567 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017). References 18–23 represent comprehensive whole-organism cell atlases for animal and plant model species.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toker, I. A. et al. Divergence in neuronal signaling pathways despite conserved neuronal identity among Caenorhabditis species. Curr. Biol. 35, 2927–2945 (2025).

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mendieta, J. P. et al. Investigating the cis-regulatory basis of C3 and C4 photosynthesis in grasses at single-cell resolution. Proc. Natl Acad. Sci. USA 121, e2402781121 (2024).

  • Triesch, S. et al. Single-nuclei sequencing of Moricandia arvensis reveals bundle sheath cell function in the photorespiratory shuttle of C3-C4 intermediate Brassicaceae. J. Exp. Bot. https://doi.org/10.1093/jxb/eraf245 (2025).

  • Li, J. et al. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54, 1711–1720 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Agarwal, V. & Shendure, J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 31, 107663 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearce, J. D. et al. A cross-species generative cell atlas across 1.5 billion years of evolution: the TranscriptFormer single-cell model. Preprint at bioRxiv https://doi.org/10.1101/2025.04.25.650731 (2025).

  • Taskiran, I. I. et al. Cell-type-directed design of synthetic enhancers. Nature 626, 212–220 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Church, S. H., Mah, J. L. & Dunn, C. W. Integrating phylogenies into single-cell RNA sequencing analysis allows comparisons across species, genes, and cells. PLoS Biol. 22, e3002633 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, C. & Sebé-Pedrós, A. Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philos. Trans. R. Soc. B 374, 20190098 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Alacid, E. & Richards, T. A. A cell–cell atlas approach for understanding symbiotic interactions between microbes. Curr. Opin. Microbiol. 64, 47–59 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534–538 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serrano, K. et al. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. Nat. Plants 10, 673–688 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fromm, A. et al. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat. Microbiol. 9, 1619–1629 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ku, C. et al. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci. Adv. 6, eaba4137 (2020). References 4245 represent the first examples of using single-cell methods to study symbiotic interactions, simultaneously mapping host and symbiont gene expression programs within the same cells.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burki, F., Sandin, M. M. & Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 31, 1267–1280 (2021).

    Article 

    Google Scholar
     

  • Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genom. 2, 100123 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordier, T., Lanzén, A., Apothéloz-Perret-Gentil, L., Stoeck, T. & Pawlowski, J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 27, 387–397 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebé-Pedrós, A., Degnan, B. M. & Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016). Establishes a foundational conceptual framework for the study of cell type evolution and outlines key open questions and future research directions in the field.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists (Springer, 2017).

  • Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631–642 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunet, T. et al. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366, 326–334 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brunet, T. et al. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 10, 61037 (2021).

    Article 

    Google Scholar
     

  • Dayel, M. J. et al. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357, 73–82 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Primers 3, 17050 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Häckel, E. Monograph of Monera. J. Cell Sci. s2-9, 327–341 (1869).

    Article 

    Google Scholar
     

  • Saville-Kent, W. A Manual of the Infusoria: Including a Description of All Known Flagellate, Ciliate, and Tentaculiferous Protozoa, British and Foreign, and an Account of the Organization and the Affinities of the Sponges Vol. 1 (D. Bogue, 1880).

  • Ramón y Cajal, S. Histologie Du Système Nerveux de l’homme & Des Vertébrés: Cervelet, Cerveau Moyen, Rétine, Couche Optique, Corps Strié, Écorce Cérébrale Générale & Régionale, Grand Sympathique Vol. 2 (A. Maloine, 1911).

  • Ramón y Cajal, S. Estructura de los centros nerviosos de las Aves. Revista Trimestral de Histología Normal y Patológica 1, 1–10 (1888).

  • Virchow, R. Cellular Pathology as Based Upon Physiological and Pathological Histology (John Churchill, 1860).

  • Hyman, L. H. The Invertebrates: Protozoa through Ctenophora (McGraw-Hill, 1940).

  • Willmer, E. N. Cytology and Evolution (Academic, 1970).

  • Vergara, H. M. et al. Whole-body integration of gene expression and single-cell morphology. Cell 184, 4819–4837 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinmetz, P. R. H. et al. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231–234 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogino, K., Tsuneki, K. & Furuya, H. Distinction of cell types in Dicyema japonicum (phylum Dicyemida) by expression patterns of 16 genes. J. Parasitol. 97, 596–601 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minnoye, L. et al. Cross-species analysis of enhancer logic using deep learning. Genome Res. 30, 1815–1834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alié, A. et al. The ancestral gene repertoire of animal stem cells. Proc. Natl Acad. Sci. USA 112, E7093–E7100 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cherbas, L. et al. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 21, 301–314 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanay, A. & Sebé-Pedrós, A. Evolutionary cell type mapping with single-cell genomics. Trends Genet. 37, 919–932 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musser, J. M. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 374, 717–723 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sebé-Pedrós, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173, 1520–1534 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najle, S. R. et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 186, 4676–4693 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 1723, eaaq1723 (2018).

    Article 

    Google Scholar
     

  • Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018). References 75, 76, 78 and 79 represent the first whole-adult cell atlases for non-model animal species.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robertson, H. E. et al. Single cell atlas of Xenoturbella bocki highlights limited cell-type complexity. Nat. Commun. 15, 2469 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Álvarez-Campos, P. et al. Annelid adult cell type diversity and their pluripotent cellular origins. Nat. Commun. 15, 3194 (2024).

  • Ghaddar, A. et al. Whole-body gene expression atlas of an adult metazoan. Sci. Adv. 9, 358 (2023).

    Article 

    Google Scholar
     

  • Dogga, S. K. et al. A single cell atlas of sexual development in Plasmodium falciparum. Science 384, eadj4088 (2024). Exemplifies the power of single-cell analysis to molecularly characterize cell states across the life cycle of unicellular eukaryotes.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S. Y. et al. Role of epigenetics in unicellular to multicellular transition in Dictyostelium. Genome Biol. 22, 134 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howick, V. M. et al. The Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycle. Science 365, eaaw2619 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, L. et al. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev. Cell 58, 1429–1444 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Domcke, S. & Shendure, J. A reference cell tree will serve science better than a reference cell atlas. Cell 186, 1103–1114 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shafer, M. E. R. Cross-species analysis of single-cell transcriptomic data. Front. Cell Dev. Biol. 7, 175 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, H. et al. Evolution of plant cell-type-specific cis-regulatory elements. Preprint at bioRxiv https://doi.org/10.1101/2024.01.08.574753 (2024).

  • Hecker, N. et al. Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium. Science 387, eadp3957 (2025). One of the first examples of cross-species cell type comparisons based on regulatory sequence information rather than gene expression data.

  • Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y., Miao, Z., Brazma, A. & Papatheodorou, I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat. Commun. 14, 6495 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10, e66747 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mah, J. L. & Dunn, C. W. Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data. Nat. Ecol. Evol. 8, 325–338 (2024). Lays out important considerations for cell type phylogenetic reconstruction and evolutionary models.

    Article 
    PubMed 

    Google Scholar
     

  • Burkhardt, P. & Jékely, G. Evolution of synapses and neurotransmitter systems: the divide-and-conquer model for early neural cell-type evolution. Curr. Opin. Neurobiol. 71, 127–138 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arendt, D., Bertucci, P. Y., Achim, K. & Musser, J. M. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 56, 144–152 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wagner, G. P. The developmental genetics of homology. Nat. Rev. Genet. 8, 473–479 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacureanu, A., Silva, J. C. da, Yang, Y., Bohic, S. & Cloetens, P. Nanoscale three-dimensional imaging of biological tissue with X-ray holographic tomography. In Proc. SPIE Vol. 10711 Biomedical Imaging and Sensing Conf. (eds Yatagai, T. et al.) 107112B (SPIE, 2018).

  • Zinchenko, V., Hugger, J., Uhlmann, V., Arendt, D. & Kreshuk, A. MorphoFeatures for unsupervised exploration of cell types, tissues, and organs in volume electron microscopy. eLife 12, e80918 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scully, T. & Klein, A. A mannitol-based buffer improves single-cell RNA sequencing of high-salt marine cells. Preprint at bioRxiv https://doi.org/10.1101/2023.04.26.538465 (2023).

  • Chari, T. et al. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Sci. Adv. 7, eabh1683 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alles, J. et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 15, 44 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bageritz, J. et al. Glyoxal as an alternative fixative for single-cell RNA sequencing. G3 13, jkad160 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiménez-Gracia, L. et al. FixNCut: single-cell genomics through reversible tissue fixation and dissociation. Genome Biol. 25, 81 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortmann, S. D. et al. Fixation before dissociation using a deep eutectic solvent preserves in vivo states and phospho-signaling in single-cell sequencing. Preprint at bioRxiv https://doi.org/10.1101/2023.02.13.528370 (2023).

  • Martin, B. K. et al. Optimized single-nucleus transcriptional profiling by combinatorial indexing. Nat. Protoc. 18, 188–207 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guillotin, B. et al. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785–791 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jariani, A. et al. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast. eLife 9, e55320 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grones, C. et al. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. Plant Cell 36, 812–828 (2024).

  • Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).

  • Guigó, R. Genome annotation: from human genetics to biodiversity genomics. Cell Genom. 3, 100375 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisman, C. M., Murray, A. W. & Eddy, S. R. Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes. Curr. Biol. 32, 2632–2639 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altenhoff, A. M. et al. Standardized benchmarking in the quest for orthologs. Nat. Methods 13, 425–430 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glover, N. et al. Advances and applications in the quest for orthologs. Mol. Biol. Evol. 36, 2157–2164 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen, Y. et al. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat. Methods 21, 1492–1500 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).

  • Price, P. D. et al. Detecting signatures of selection on gene expression. Nat. Ecol. Evol. 6, 1035–1045 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bertram, J. et al. CAGEE: computational analysis of gene expression evolution. Mol. Biol. Evol. 40, msad106 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohlfs, R. V., Harrigan, P. & Nielsen, R. Modeling gene expression evolution with an extended Ornstein–Uhlenbeck process accounting for within-species variation. Mol. Biol. Evol. 31, 201–211 (2014).

  • Rohlfs, R. V. & Nielsen, R. Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution. Syst. Biol. 64, 695–708 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Challis, R., Kumar, S., Sotero-Caio, C., Brown, M. & Blaxter, M. Genomes on a Tree (GoaT): a versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Res. 8, 24 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osumi-Sutherland, D. et al. Cell type ontologies of the Human Cell Atlas. Nat. Cell Biol. 23, 1129–1135 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, S. A. The evolving concept of cell identity in the single cell era. Development 146, dev169748 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *