Minimally invasive implantation of scalable high-density cortical microelectrode arrays for multimodal neural decoding and stimulation

  • Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, S.-P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P. & Black, M. J. Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia. J. Neural Eng. 5, 455–476 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 6, e18554 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simeral, J. D., Kim, S.-P., Black, M. J., Donoghue, J. P. & Hochberg, L. R. Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J. Neural Eng. 8, 025027 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilja, V. et al. Clinical translation of a high-performance neural prosthesis. Nat. Med. 21, 1142–1145 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. An electrocorticographic brain interface in an individual with tetraplegia. PLoS ONE 8, e55344 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Velliste, M., Perel, S., Spalding, M. C., Whitford, A. S. & Schwartz, A. B. Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Schwartz, A. B., Cui, X. T., Weber, D. J. & Moran, D. W. Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52, 205–220 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brindley, G. S. & Lewin, W. S. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196, 479–493 (1968).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobelle, W. H., Mladejovsky, M. G. & Girvin, J. P. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 183, 440–444 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • Dobelle, W. H. et al. Artificial vision for the blind by electrical stimulation of the visual cortex. Neurosurgery 5, 521–527 (1979).

    CAS 
    PubMed 

    Google Scholar
     

  • Eddington, D. K. Speech discrimination in deaf subjects with cochlear implants. J. Acoust. Soc. Am. 68, 885–891 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, B. S. & Dorman, M. F. Cochlear implants: a remarkable past and a brilliant future. Hear. Res. 242, 3–21 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiland, J. D., Liu, W. & Humayun, M. S. Retinal prosthesis. Annu. Rev. Biomed. Eng. 7, 361–401 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, P. M., Ackland, H. M., Lowery, A. J. & Rosenfeld, J. V. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 1595, 51–73 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620, 1037–1046 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willett, F. R. et al. A high-performance speech neuroprosthesis. Nature 620, 1031–1036 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lorach, H. et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature 618, 126–133 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W. et al. Human motor cortical activity recorded with micro-ECoG electrodes during individual finger movements. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009, 586–589 (2009).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Wessberg, J. et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Carmena, J. M. et al. Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lebedev, M. A. & Nicolelis, M. A. L. Brain–machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Fraser, G. W., Chase, S. M., Whitford, A. & Schwartz, A. B. Control of a brain–computer interface without spike sorting. J. Neural Eng. 6, 055004 (2009).

    PubMed 

    Google Scholar
     

  • Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collinger, J. L., Gaunt, R. A. & Schwartz, A. B. Progress towards restoring upper limb movement and sensation through intracortical brain-computer interfaces. Curr. Opin. Biomed. Eng. 8, 84–92 (2018).


    Google Scholar
     

  • Musk, E. & Neuralink An integrated brain-machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahasrabuddhe, K. et al. The Argo: a high channel count recording system for neural recording in vivo. J. Neural. Eng. 18, 015002 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalk, G. et al. Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J. Neural Eng. 4, 264–275 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Wissel, T. et al. Hidden Markov model and support vector machine based decoding of finger movements using electrocorticography. J. Neural Eng. 10, 056020 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moses, D. A., Leonard, M. K., Makin, J. G. & Chang, E. F. Real-time decoding of question-and-answer speech dialogue using human cortical activity. Nat. Commun. 10, 3096 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, P., Anumanchipalli, G. K. & Chang, E. F. Brain2Char: a deep architecture for decoding text from brain recordings. J. Neural. Eng. https://doi.org/10.1088/1741-2552/abc742 (2020).

  • Yu, B. M. et al. Mixture of trajectory models for neural decoding of goal-directed movements. J. Neurophysiol. 97, 3763–3780 (2007).

    PubMed 

    Google Scholar
     

  • Kemere, C., Shenoy, K. V. & Meng, T. H. Model-based neural decoding of reaching movements: a maximum likelihood approach. IEEE Trans. Biomed. Eng. 51, 925–932 (2004).

    PubMed 

    Google Scholar
     

  • Wilson, G. H. et al. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. J. Neural Eng. 17, 066007 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harrison, R. R. & Charles, C. A low-power low-noise CMOS for amplifier neural recording applications. IEEE J. Solid-State Circuits 38, 958–965 (2003).


    Google Scholar
     

  • Harrison, R. R. et al. A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid-State Circuits 42, 123–133 (2007).


    Google Scholar
     

  • Sarpeshkar, R. et al. Low-power circuits for brain–machine interfaces. IEEE Trans. Biomed. Circuits Syst. 2, 173–183 (2008).

    PubMed 

    Google Scholar
     

  • Mora Lopez, C. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11, 510–522 (2017).

    PubMed 

    Google Scholar
     

  • Wang, S. et al. A compact Quad-Shank CMOS neural probe with 5,120 addressable recording sites and 384 fully differential parallel channels. IEEE Trans. Biomed. Circuits Syst. 13, 1625–1634 (2019).

    PubMed 

    Google Scholar
     

  • Biederman, W. et al. A 4.78 mm 2 fully-integrated neuromodulation SoC combining 64 acquisition channels with digital compression and simultaneous dual stimulation. IEEE J. Solid-State Circuits 50, 1038–1047 (2015).


    Google Scholar
     

  • Yoon, D.-Y. et al. A 1024-channel simultaneous recording neural SoC with stimulation and real-time spike detection. In 2021 Symposium on VLSI Circuits (ed Fukazawa, M.) 1–2 (IEEE, 2021).

  • Johnson, B. C. et al. An implantable 700 μW 64-channel neuromodulation IC for simultaneous recording and stimulation with rapid artifact recovery. In 2017 Symposium on VLSI Circuits (ed Tomita, Y.) C48–C49 (IEEE, 2017).

  • Lee, J. et al. Neural recording and stimulation using wireless networks of microimplants. Nat. Electron. 4, 604–614 (2021).


    Google Scholar
     

  • Ha, S. et al. Silicon-integrated high-density electrocortical interfaces. Proc. IEEE 105, 11–33 (2017).

    CAS 

    Google Scholar
     

  • Ahmadi, N. et al. Towards a distributed, chronically-implantable neural interface. In 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER) 719–724 (IEEE, 2019).

  • Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • O’Leary, G., Groppe, D. M., Valiante, T. A., Verma, N. & Genov, R. NURIP: neural interface processor for brain-state classification and programmable-waveform neurostimulation. IEEE J. Solid-State Circuits 53, 3150–3162 (2018).


    Google Scholar
     

  • Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).

    PubMed 

    Google Scholar
     

  • Ordonez, J. S., Boehler, C., Schuettler, M. & Stieglitz, T. Improved polyimide thin-film electrodes for neural implants. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (eds Khoo, M. C. K., Cauwenberghs, G. & Weiland, J. D.) 5134–5137 (IEEE, 2012).

  • Vomero, M. et al. Incorporation of silicon carbide and diamond-like carbon as adhesion promoters improves In vitro and in vivo stability of thin-film glassy carbon electrocorticography Arrays. Adv. Biosys 2, 1700081 (2018).


    Google Scholar
     

  • Deku, F. et al. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording. J. Neural Eng. 15, 016007 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, C. et al. Ultra-long-term reliable encapsulation using an atomic layer deposited HfO2/Al2O3/HfO2 triple-interlayer for biomedical implants. Coatings 9, 579 (2019).

    CAS 

    Google Scholar
     

  • Jeong, J. et al. Conformal hermetic sealing of wireless microelectronic implantable chiplets by multilayered atomic layer deposition (ALD). Adv. Funct. Mater. 29, 1806440 (2019).


    Google Scholar
     

  • Lamont, C. et al. Silicone encapsulation of thin-film SiOx, SiOxNy and SiC for modern electronic medical implants: a comparative long-term ageing study. J. Neural Eng. 18, 055003 (2021).

    PubMed Central 

    Google Scholar
     

  • Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).

    PubMed 

    Google Scholar
     

  • Smalley, E. The business of brain–computer interfaces. Nat. Biotechnol. 37, 978–982 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Lebedev, M. A. & Nicolelis, M. A. L. Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017).

    PubMed 

    Google Scholar
     

  • Kang, Y. et al. Epidemiology of worldwide spinal cord injury: a literature review. JN 6, 1–9 (2017).

    CAS 

    Google Scholar
     

  • Lo, J., Chan, L. & Flynn, S. A systematic review of the incidence, prevalence, costs and activity and work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis. Spinal Cord Injury, Stroke and Traumatic Brain Injury in the United States: A 2019 Update. Arch. Phys. Med. Rehabilitation 102, 115–131 (2021).


    Google Scholar
     

  • Katan, M. & Luft, A. Global Burden of Stroke. Semin. Neurol. 38, 208–211 (2018).

    PubMed 

    Google Scholar
     

  • Zack, M. M. & Kobau, R. National and state estimates of the numbers of adults and children with active epilepsy—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 66, 821–825 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, T., Friedman, D. S., Bradley, C. & Massof, R. Estimates of incidence and prevalence of visual impairment, low vision, and blindness in the United States. JAMA Ophthalmol. 136, 12 (2018).

    PubMed 

    Google Scholar
     

  • Matthews, K. A. et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimer’s Dement. 15, 17–24 (2019).


    Google Scholar
     

  • Vomero, M. et al. Conformable polyimide-based μECoGs: bringing the electrodes closer to the signal source. Biomaterials 255, 120178 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Bockhorst, T. et al. Synchrony surfacing: epicortical recording of correlated action potentials. Eur. J. Neurosci. 48, 3583–3596 (2018).

    PubMed 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Khodagholy, D. et al. Highly conformable conducting polymer electrodes for in vivo recordings. Adv. Mater. 23, H268–H272 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9, 759711 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, P. R. et al. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. J. Neural Eng. 20, 014001 (2023).


    Google Scholar
     

  • Szymanski, L. J. et al. Neuropathological effects of chronically implanted, intracortical microelectrodes in a tetraplegic patient. J. Neural Eng. 18, 0460b9 (2021).


    Google Scholar
     

  • Kim, B. J. et al. 3D parylene sheath neural probe for chronic recordings. J. Neural Eng. 10, 045002 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, C.-H. et al. Flexible, high-resolution thin-film electrodes for human and animal neural research. J. Neural Eng. 18, 045009 (2021).


    Google Scholar
     

  • Duraivel, S. et al. High-resolution neural recordings improve the accuracy of speech decoding. Nat. Commun. 14, 6938 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschberg, A. W. et al. Development of an anatomically conformal parylene neural probe array for multi-region hippocampal recordings. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) 129–132 (IEEE, 2017).

  • Hara, S. A. et al. Long-term stability of intracortical recordings using perforated and arrayed parylene sheath electrodes. J. Neural Eng. 13, 066020 (2016).

    PubMed 

    Google Scholar
     

  • Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21–31.e5 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).

    PubMed 

    Google Scholar
     

  • Salari, E. et al. Classification of articulator movements and movement direction from sensorimotor cortex activity. Sci. Rep. 9, 14165 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schalk, G. et al. Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A. & Mehring, C. Prediction of arm movement trajectories from ECoG-recordings in humans. J. Neurosci. Methods 167, 105–114 (2008).

    PubMed 

    Google Scholar
     

  • Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angrick, M. et al. Speech synthesis from ECoG using densely connected 3D convolutional neural networks. J. Neural Eng. 16, 036019 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ho, E. et al. The Layer 7 Cortical Interface: a scalable and minimally invasive brain–computer interface platform. Preprint at bioRxiv https://doi.org/10.1101/2022.01.02.474656 (2022).

  • Konrad, P. et al. First-in-human experience performing high-resolution cortical mapping using a novel microelectrode array containing 1024 electrodes. J. Neural Eng. 22, 026009 (2025).


    Google Scholar
     

  • Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    PubMed 

    Google Scholar
     

  • Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Winslow, B. D. & Tresco, P. A. Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex. Biomaterials 31, 1558–1567 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Volkova, K., Lebedev, M. A., Kaplan, A. & Ossadtchi, A. Decoding movement from electrocorticographic activity: a review. Front. Neuroinform. 13, 74 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Branco, M. P. et al. Decoding hand gestures from primary somatosensory cortex using high-density ECoG. Neuroimage 147, 130–142 (2017).

    PubMed 

    Google Scholar
     

  • Nakanishi, Y. et al. Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS ONE 8, e72085 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pistohl, T. et al. Grasp detection from human ECoG during natural reach-to-grasp movements. PLoS ONE 8, e54658 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C. & Ball, T. Decoding natural grasp types from human ECoG. Neuroimage 59, 248–260 (2012).

    PubMed 

    Google Scholar
     

  • Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of cortical activity to text with an encoder–decoder framework. Nat. Neurosci. 23, 575–582 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markowitz, D. A., Wong, Y. T., Gray, C. M. & Pesaran, B. Optimizing the decoding of movement goals from local field potentials in macaque cortex. J. Neurosci. 31, 18412–18422 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tchoe, Y. et al. Human brain mapping with multithousand-channel PtNRGrids resolves spatiotemporal dynamics. Sci. Transl. Med. 14, eabj1441 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rachinskiy, I. et al. High-density, actively multiplexed µECoG array on reinforced silicone substrate. Front. Nanotechnol. 4, 837328 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, Z. et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Adv. Sci. 6, 1801617 (2019).


    Google Scholar
     

  • Zhou, Y. et al. A silk-based self-adaptive flexible opto-electro neural probe. Microsyst. Nanoeng. 8, 118 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pesaran, B., Pezaris, J. S., Sahani, M., Mitra, P. P. & Andersen, R. A. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5, 805–811 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, R. A., Musallam, S. & Pesaran, B. Selecting the signals for a brain–machine interface. Curr. Opin. Neurobiol. 14, 720–726 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Scherberger, H., Jarvis, M. R. & Andersen, R. A. Cortical local field potential encodes movement intentions in the posterior parietal cortex. Neuron 46, 347–354 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhuang, J., Truccolo, W., Vargas-Irwin, C. & Donoghue, J. P. Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex. IEEE Trans. Biomed. Eng. 57, 1774–1784 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, A. K., Truccolo, W., Vargas-Irwin, C. E. & Donoghue, J. P. Decoding 3D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity, and local field potentials. J. Neurophysiol. 107, 1337–1355 (2012).

    PubMed 

    Google Scholar
     

  • Bansal, A. K., Vargas-Irwin, C. E., Truccolo, W. & Donoghue, J. P. Relationships among low-frequency local field potentials, spiking activity, and three-dimensional reach and grasp kinematics in primary motor and ventral premotor cortices. J. Neurophysiol. 105, 1603–1619 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herron, J. et al. Challenges and opportunities of acquiring cortical recordings for chronic adaptive deep brain stimulation. Nat. Biomed. Eng. 9, 606–617 (2025).

    PubMed 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *