Wednesday , 17 September 2025

Macrovascular and microvascular outcomes of metabolic surgery versus GLP-1 receptor agonists in patients with diabetes and obesity

  • Courcoulas, A. P. et al. Long-term outcomes of medical management vs bariatric surgery in type 2 diabetes. JAMA 331, 654–664 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mingrone, G. et al. Bariatric–metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 386, 964–973 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ikramuddin, S. et al. Lifestyle intervention and medical management with vs without Roux-en-Y gastric bypass and control of hemoglobin A1c, LDL cholesterol, and systolic blood pressure at 5 years in the diabetes surgery study. JAMA 319, 266–278 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aminian, A. et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity. JAMA 322, 1271–1282 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, D. P. et al. Association between bariatric surgery and macrovascular disease outcomes in patients with type 2 diabetes and severe obesity. JAMA 320, 1570–1582 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, R. et al. Microvascular outcomes in patients with diabetes after bariatric surgery versus usual care: a matched cohort study. Ann. Intern. Med. 169, 300–310 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolff Sagy, Y. et al. Effectiveness of bariatric metabolic surgery versus glucagon-like peptide-1 receptor agonists for prevention of congestive heart Failure. Nat. Med. 30, 2337–2342 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of Medical Care in Diabetes—2020. Diabetes Care 43, S111–S134 (2020).

    Article 

    Google Scholar
     

  • Marso, S. P. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375, 311–322 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marso, S. P. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 375, 1834–1844 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gerstein, H. C. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 394, 121–130 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lincoff, A. M. et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N. Engl. J. Med. 389, 2221–2232 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stenberg, E. & Näslund, E. Major adverse cardiovascular events among patients with type-2 diabetes, a nationwide cohort study comparing primary metabolic and bariatric surgery to GLP-1 receptor agonist treatment. Int. J. Obes. 47, 251–256 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, L. E., Li, F. & Pencina, M. J. Overlap weighting: a propensity score method that mimics attributes of a randomized clinical trial. JAMA 323, 2417–2418 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Funk, M. J. et al. Doubly robust estimation of causal effects. Am. J. Epidemiol. 173, 761–767 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med. 373, 11–22 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Trujillo, J. M., Nuffer, W. & Smith, B. A. GLP-1 receptor agonists: an updated review of head-to-head clinical studies. Ther. Adv. Endocrinol. Metab. 12, 204201882199732 (2021).

    Article 

    Google Scholar
     

  • Douros, J. D., Tong, J. & D’Alessio, D. A. The effects of bariatric surgery on islet function, insulin secretion, and glucose control. Endocr. Rev. 40, 1394–1423 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batterham, R. L. & Cummings, D. E. Mechanisms of diabetes improvement following bariatric/metabolic surgery. Diabetes Care 39, 893–901 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasoyan, H., Pfoh, E. R., Schulte, R., Le, P. & Rothberg, M. B. Early‐ and later‐stage persistence with antiobesity medications: a retrospective cohort study. Obesity 32, 486–493 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Liss, D. T. et al. Treatment modification after initiating second-line medication for type 2 diabetes. Am. J. Manag. Care 29, 661–668 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wilding, J. P. H. et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: the STEP 1 trial extension. Diabetes Obes. Metab. 24, 1553–1564 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bashir, B. et al. Microvascular complications of obesity and diabetes—role of bariatric surgery. Obes. Rev. 24, e13602 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vivante, A. et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch. Intern. Med. 172, 1644–1650 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, M. et al. Semaglutide 2·4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2): a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 397, 971–984 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilding, J. P. H. et al. Once-weekly semaglutide in adults with overweight or obesity. N. Engl. J. Med. 384, 989–1002 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gasoyan, H. et al. One-year weight reduction with semaglutide or liraglutide in clinical practice. JAMA Netw. Open 7, e2433326 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hernán, M. A., Wang, W. & Leaf, D. E. Target trial emulation: a framework for causal inference from observational data. JAMA 328, 2446–2447 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Hernán, M. A. & Robins, J. M. Using big data to emulate a target trial when a randomized trial is not available. Am. J. Epidemiol. 183, 758–764 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madenci, A. L. et al. Estimating the effect of bariatric surgery on cardiovascular events using observational data? Epidemiology 35, 721–729 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • VanderWeele, T. J. & Ding, P. Sensitivity analysis in observational research: introducing the E-value. Ann. Intern. Med. 167, 268–274 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Inker, L. A. et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N. Engl. J. Med. 385, 1737–1749 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blecker, S. et al. Validation of EHR medication fill data obtained through electronic linkage with pharmacies. J. Manag. Care Spec. Pharm. 27, 1482–1487 (2021).

    PubMed 

    Google Scholar
     

  • Milinovich, A. & Kattan, M. W. Extracting and utilizing electronic health data from Epic for research. Ann. Transl. Med. 6, 42 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J. Clin. Epidemiol. 61, 344–349 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Rubin, D. B. Inference and missing data. Biometrika 63, 581–592 (1976).

    Article 

    Google Scholar
     

  • Austin, P. C. Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes. J. Clin. Epidemiol. 63, 46–55 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Raebel, M. A., Schmittdiel, J., Karter, A. J., Konieczny, J. L. & Steiner, J. F. Standardizing terminology and definitions of medication adherence and persistence in research employing electronic databases. Med. Care 51, S11–S21 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *