Loss of macroevolutionary species fitness explains the rise and fall of clades

  • Raup, D. M. Biological extinction in Earth history. Science 231, 1528–1533 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benton, M. J. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728–732 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584–593 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Gavrilets, S. & Losos, J. B. Adaptive radiation: contrasting theory with data. Science 323, 732–737 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gould, S. J., Gilinsky, N. L. & German, R. Z. Asymmetry of lineages and the direction of evolutionary time. Science 236, 1437–1441 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Žliobaitė, I., Fortelius, M. & Stenseth, N. C. Reconciling taxon senescence with the Red Queen’s hypothesis. Nature 552, 92–95 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science 341, 290–292 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etienne, R. S. & Haegeman, B. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am. Nat. 180, E75–E89 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gavryushkina, A. et al. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 66, 57–73 (2017).

    PubMed 

    Google Scholar
     

  • Quintero, I., Lartillot, N. & Morlon, H. Imbalanced speciation pulses sustain the radiation of mammals. Science 384, 1007–1012 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hauffe, T., Cantalapiedra, J. L. & Silvestro, D. Trait-mediated speciation and human-driven extinctions in proboscideans revealed by unsupervised Bayesian neural networks. Sci. Adv. 10, eadl2643 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burin, G., Alencar, L. R., Chang, J., Alfaro, M. E. & Quental, T. B. How well can we estimate diversity dynamics for clades in diversity decline? Syst. Biol. 68, 47–62 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Silvestro, D., Warnock, R. C., Gavryushkina, A. & Stadler, T. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat. Commun. 9, 5237 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warnock, R. C., Heath, T. A. & Stadler, T. Assessing the impact of incomplete species sampling on estimates of speciation and extinction rates. Paleobiology 46, 137–157 (2020).

    Article 

    Google Scholar
     

  • Billaud, O., Moen, D., Parsons, T. L. & Morlon, H. Estimating diversity through time using molecular phylogenies: old and species-poor frog families are the remnants of a diverse past. Syst. Biol. 69, 363–383 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Rabosky, D. L. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12, 735–743 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Sepkoski, J. J. Ten years in the library: new data confirm paleontological patterns. Paleobiology 19, 43–51 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Alroy, J. Dynamics of origination and extinction in the marine fossil record. Proc. Natl Acad. Sci. USA 105, 11536–11542 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foote, M. Symmetric waxing and waning of marine invertebrate genera. Paleobiology 33, 517–529 (2007).

    Article 

    Google Scholar
     

  • Morlon, H., Potts, M. D. & Plotkin, J. B. Inferring the dynamics of diversification: a coalescent approach. PLoS Biol. 8, e1000493 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hohmann, N. & Jarochowska, E. Enforced symmetry: the necessity of symmetric waxing and waning. PeerJ 7, e8011 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nee, S. Birth–death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).

    Article 

    Google Scholar
     

  • Simpson, G. G.Tempo and Mode in Evolution (Columbia Univ. Press, 1953).

  • Schluter, D.The Ecology of Adaptive Radiations (Oxford Univ. Press, 2000).

  • Calderón del Cid, C. et al. The clade replacement theory: a framework to study age-dependent extinction. J. Evol. Biol. 37, 290–301 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Hughes, M., Gerber, S. & Wills, M. A. Clades reach highest morphological disparity early in their evolution. Proc. Natl Acad. Sci. USA 110, 13875–13879 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bambach, R. K., Knoll, A. H. & Wang, S. C. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30, 522–542 (2004).

    Article 

    Google Scholar
     

  • Stadler, T. Sampling-through-time in birth–death trees. J. Theor. Biol. 267, 396–404 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Truman, K., Vaughan, T. G., Gavryushkin, A. & Gavryushkina, A. S. The fossilised birth–death model is identifiable. Syst. Biol. 74, 112–123 (2025).

  • Jablonski, D. Heritability at the species level: analysis of geographic ranges of cretaceous mollusks. Science 238, 360–363 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanner, M. A. & Wong, W. H. The calculation of posterior distributions by data augmentation. J. Am. Stat. Assoc. 82, 528–540 (1987).

    Article 

    Google Scholar
     

  • Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maliet, O. & Morlon, H. Fast and accurate estimation of species-specific diversification rates using data augmentation. Syst. Biol. 71, 353–366 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland, S. M. The non-uniformity of fossil preservation. Phil. Trans. R. Soc. B 371, 20150130 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pett, W. & Heath, T. A. in Phylogenetics in the Genomic Era (eds Scornavacca, C. et al.) 5.1:1–5.1:18 (2020); https://hal.science/hal-02536361

  • Andréoletti, J. et al. The occurrence birth–death process for combined-evidence analysis in macroevolution and epidemiology. Syst. Biol. 71, 1440–1452 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, R. B., Flannery-Sutherland, J. T. & Silvestro, D. DeepDive: estimating global biodiversity patterns through time using deep learning. Nat. Commun. 15, 4199 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foote, M. Diversity-dependent diversification in the history of marine animals. Am. Nat. 201, 680–693 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Barnes, B. D., Sclafani, J. A. & Zaffos, A. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl Acad. Sci. USA 118, e2019208118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gould, S. J., Raup, D. M., Sepkoski, J. J., Schopf, T. J. & Simberloff, D. S. The shape of evolution: a comparison of real and random clades. Paleobiology 3, 23–40 (1977).

    Article 

    Google Scholar
     

  • Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evol. 3, 1086–1092 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Van Valen, L. The Red Queen. Am. Nat. 111, 809–810 (1977).

    Article 

    Google Scholar
     

  • Eldredge, N. & Gould, S. J. in Models in Paleobiology (ed. Schopf, T. J. M.) 82–115 (Freeman, Cooper & Co., 1972).

  • Hunt, G. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc. Natl Acad. Sci. USA 104, 18404–18408 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanisidro, O., Mihlbachler, M. C. & Cantalapiedra, J. L. A macroevolutionary pathway to megaherbivory. Science 380, 616–618 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).


    Google Scholar
     

  • Spiridonov, A. & Lovejoy, S. Life rather than climate influences diversity at scales greater than 40 million years. Nature 607, 307–312 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearson, P. N. Investigating age dependency of species extinction rates using dynamic survivorship analysis. Hist. Biol. 10, 119–136 (1995).

    Article 

    Google Scholar
     

  • Nietzsche, F. Thus Spoke Zarathustra: A Book for All and None (Random House, 1995).

  • Fischhoff, B. Hindsight is not equal to foresight: the effect of outcome knowledge on judgment under uncertainty. J. Exp. Psychol. 1, 288–299 (1975).


    Google Scholar
     

  • Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).

    Article 

    Google Scholar
     

  • Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).

    Article 

    Google Scholar
     

  • Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell, J. S., Etienne, R. S. & Rabosky, D. L. Inferring diversification rate variation from phylogenies with fossils. Syst. Biol. 68, 1–18 (2019).

    PubMed 

    Google Scholar
     

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    Article 
    CAS 

    Google Scholar
     

  • Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 

    Google Scholar
     

  • Huelsenbeck, J. P., Rannala, B. & Masly, J. P. Accommodating phylogenetic uncertainty in evolutionary studies. Science 288, 2349–2350 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stadler, T., Gavryushkina, A., Warnock, R. C. M., Drummond, A. J. & Heath, T. A. The fossilized birth–death model for the analysis of stratigraphic range data under different speciation modes. J. Theor. Biol. 447, 41–55 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolz, U., Gavryushkina, A., Vaughan, T. G., Stadler, T. & Allen, B. J. Enhancing evolutionary timelines: the impact of stratigraphic range information on phylogenetic inference. Preprint at bioRxiv https://doi.org/10.1101/2025.04.17.649084 (2025).

  • Varela, S., González Hernández, J. & Fabris Sgarbi, L. paleobioDB: download and process data from the paleobiology database. R package v.0.7.0. CRAN https://CRAN.R-project.org/package=paleobioDB (2020).

  • Zaffos, A. A. velociraptr: Fossil Analysis. R package v.1.1.0. CRAN https://CRAN.R-project.org/package=velociraptr (2019).

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

  • Quintero, I., Landis, M. J., Jetz, W. & Morlon, H. The build-up of the present-day tropical diversity of tetrapods. Proc. Natl Acad. Sci. USA 120, e2220672120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stan Reference Manual: Version 2.36.0 (Stan Development Team, 2024).

  • Gabry, J., Češnovar, R., Johnson, A. & Bronder, S. CmdStanR: R interface to ’CmdStan’. R package v.0.9.0. Stan https://mc-stan.org/cmdstanr/ (2025).

  • Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013).

    Article 

    Google Scholar
     

  • Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B 279, 1300–1309 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Quintero, I. Supplementary dataset for “The rise, decline and fall of clades”. Zenodo https://doi.org/10.5281/zenodo.15535408 (2025).


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *