Long-distance remote epitaxy | Nature

  • Kim, H. et al. Remote epitaxy. Nat. Rev. Methods Primers 2, 40 (2022).

    Article 

    Google Scholar
     

  • Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. A reconfigurable remotely epitaxial VO2 electrical heterostructure. Nano Lett. 20, 33–42 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jeong, J. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6, eaaz5180 (2020).

  • Choi, J. et al. Facet-selective morphology-controlled remote epitaxy of ZnO microcrystals via wet chemical synthesis. Sci. Rep. 11, 22697 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeong, J. et al. Remote homoepitaxy of ZnO microrods across graphene layers. Nanoscale 10, 22970–22980 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, D. K. et al. Position-controlled remote epitaxy of ZnO for mass-transfer of as-deployed semiconductor microarrays. APL Mater. 9, 051102 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Jeong, J. et al. Remote heteroepitaxy across graphene: hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 113, 233103 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Chang, H. et al. Transfer-free graphene-guided high-quality epitaxy of AlN film for deep ultraviolet light-emitting diodes. J. Appl. Phys. 130, 193103 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Z. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 31, 1807345 (2019).

    Article 

    Google Scholar
     

  • Chang, H. et al. Quasi-2D growth of aluminum nitride film on graphene for boosting deep ultraviolet light-emitting diodes. Adv. Sci. 7, 2001272 (2020).

    Article 

    Google Scholar
     

  • Kim, H. et al. High-throughput manufacturing of epitaxial membranes from a single wafer by 2D materials-based layer transfer process. Nat. Nanotechnol. 18, 464–470 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 11, 9310–9318 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yoon, H. et al. Freestanding epitaxial SrTiO3 nanomembranes via remote epitaxy using hybrid molecular beam epitaxy. Sci. Adv. 8, eadd5328 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzo, S. et al. Pinhole-seeded lateral epitaxy and exfoliation of GaSb films on graphene-terminated surfaces. Nat. Commun. 13, 4014 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jia, R. et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. J. Vac. Sci. Technol. A 39, 040405 (2021).

    Article 

    Google Scholar
     

  • Jang, D. et al. Thru-hole epitaxy: a highway for controllable and transferable epitaxial growth. Adv. Mater. Interfaces10, 2201406 (2023).

  • Al Balushi, Z. Y. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 15, 1166–1171 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Briggs, N. et al. Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy. Nat. Mater. 19, 637–643 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Voevodin, A. A. & Donley, M. S. Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review. Surf. Coat. Technol. 82, 199–213 (1996).

    Article 

    Google Scholar
     

  • Stoumpos, C. C. et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722–2727 (2013).

    Article 

    Google Scholar
     

  • Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).

    Article 

    Google Scholar
     

  • Chan, K. T., Neaton, J. B. & Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 77, 235430 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Ren, F. et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Sci. Adv. 7, eabf5011 (2021).

  • Alaskar, Y. et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer. Adv. Funct. Mater. 24, 6629–6638 (2014).

    Article 

    Google Scholar
     

  • Lesiak, B. et al. C sp2/sp3 hybridisations in carbon nanomaterials – XPS and (X)AES study. Appl. Surf. Sci. 452, 223–231 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mendelson, S. Dislocation etch pit formation in sodium chloride. J. Appl. Phys. 32, 1579–1583 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Landeiro Dos Reis, M., Carrez, P. & Cordier, P. Interaction between dislocation and vacancies in magnesium oxide: insights from atomistic simulations and elasticity theory. Phys. Rev. Mater. 5, 063602 (2021).

    Article 

    Google Scholar
     

  • Mendelson, S. Dislocation etch pit formation in sodium chloride. J. Appl. Phys. 32, 1579–1583 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Maeng, S.-C. Dislocations in sodium-chloride crystals. Z. Naturforsch. A 21, 301–303 (1966).

    Article 
    ADS 

    Google Scholar
     

  • Bording, J. K., Li, B. Q., Shi, Y. F. & Zuo, J. M. Size- and shape-dependent energetics of nanocrystal interfaces: experiment and simulation. Phys. Rev. Lett. 90, 226104 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Huang, F. & Lin, Z. Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2, 18–34 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shi, J. et al. Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition. Nano Lett. 13, 5727–5734 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Elsner, J. et al. Theory of threading edge and screw dislocations in GaN. Phys. Rev. Lett. 79, 3672–3675 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Gao, Z. et al. Polarity results in different etch pit shapes of screw and edge dislocations in GaN epilayers. In Proc. 2007 International Workshop on Electron Devices and Semiconductor Technology (eds Ren, T.-L. et al.) 125–128 (IEEE, 2007).

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Article 

    Google Scholar
     

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mat. Sci. Eng. 18, 015012 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Tosi, M. P. & Fumi, F. G. Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: the generalized Huggins-Mayer form. J. Phys. Chem. Solids 25, 45–52 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Eastwood, J. W., Hockney, R. W. & Lawrence, D. N. P3M3DP—the three-dimensional periodic particle-particle/particle-mesh program. Comput. Phys. Commun. 19, 215–261 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Volksen, W., Miller, R. D. & Dubois, G. Low dielectric constant materials. Chem. Rev. 110, 56–110 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Seeger, K. Microwave measurement of the dielectric constant of high-density polyethylene. IEEE Trans. Microw. Theory Tech. 39, 352–354 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Santos, E. J. G. & Kaxiras, E. Electric-field dependence of the effective dielectric constant in graphene. Nano Lett. 13, 898–902 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kamaladasa, R. J. et al. Dislocation impact on resistive switching in single-crystal SrTiO3. J. Appl. Phys. 113, 234510 (2013).

    Article 
    ADS 

    Google Scholar
     

  • van Benthem, K., Elsässer, C. & French, R. H. Bulk electronic structure of SrTiO3: experiment and theory. J. Appl. Phys. 90, 6156–6164 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Bae, S.-H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jia, R., Shi, Y. & Shi, J. Long-distance remote epitaxy. Zenodo https://doi.org/10.5281/zenodo.15770342 (2025).


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *