JWST finds planet with all-carbon atmosphere orbiting ‘black widow’ star

Science advances through data that don’t fit our current understanding. At least that was Thomas Kuhn’s theory in his famous On the Structure of Scientific Revolutions. So scientists should welcome new data that challenges their understanding of how the universe works. A recent paper, available in pre-print on arXiv, using data from the James Webb Space Telescope (JWST) might just had found some data that can do that. It looked at an exoplanet around a millisecond pulsar and found its atmosphere is made up of almost entirely pure carbon.

This type of pulsar, PSR J2322-2650, is known as a “black widow” system, as it powers its high energy outbursts by stealing material from a neighboring star. In this case, that neighboring star has likely been degraded to a “hot Jupiter” companion planet that orbits its parent neutron star every 7.8 hours. A typical “black widow” formation process has two steps – one where the neutron star (which in this case is also a pulsar) steals the material, and a second step where it blasts its companion with high energy gamma radiation, ripping off most of the companion star’s outer layers and resulting in a Jupiter-sized exoplanet composed mainly of helium.


Source link

Leave a Reply

Your email address will not be published. Required fields are marked *