Exploring the concept of bacterial memory

  • Richards, B. A. & Frankland, P. W. The persistence and transience of memory. Neuron 94, 1071–1084 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zlotnik, G. & Vansintjan, A. Memory: an extended definition. Front Psychol. 10, 2523 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kukushkin, N. V., Carney, R. E., Tabassum, T. & Carew, T. J. The massed-spaced learning effect in non-neural human cells. Nat. Commun. 15, 9635 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Witzany, G. in Memory and Learning in Plants (eds Frantisek, B. et al.) 1–16 (Springer, 2018); https://doi.org/10.1007/978-3-319-75596-0_1

  • De la Fuente, I. M. et al. Evidence of conditioned behavior in amoebae. Nat. Commun. 10, 3690 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saigusa, T., Tero, A., Nakagaki, T. & Kuramoto, Y. Amoebae anticipate periodic events. Phys. Rev. Lett. 100, 018101 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Nakagaki, T., Yamada, H. & Tóth, Á Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Vermeersch, L. et al. Do microbes have a memory? History-dependent behavior in the adaptation to variable environments. Front. Microbiol. 13, 1004488 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solopova, A. et al. Bet-hedging during bacterial diauxic shift. Proc. Natl Acad. Sci. USA 111, 7427–7432 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Mitchell, A. et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lambert, G. et al. Correction: Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004793 (2014).

    Article 

    Google Scholar
     

  • Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letourneau, J. et al. Ecological memory of prior nutrient exposure in the human gut microbiome. ISME J. 16, 2479–2490 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Globus, R. & Qimron, U. Crystal-clear memories of a bacterium. Science 357, 1096–1097 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harvey, Z. H., Chen, Y. & Jarosz, D. F. Protein-based inheritance: epigenetics beyond the chromosome. Mol. Cell 69, 195–202 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lambert, G. & Kussell, E. Memory and fitness optimization of bacteria under fluctuating environments. PLoS Genet. 10, e1004556 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mitchell, A. & Pilpel, Y. A mathematical model for adaptive prediction of environmental changes by microorganisms. Proc. Natl Acad. Sci. USA 108, 7271–7276 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Veening, J.-W., Smits, W. K. & Kuipers, O. P. Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev. Microbiol 62, 193–210 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Grimbergen, A. J., Siebring, J., Solopova, A. & Kuipers, O. P. Microbial bet-hedging: the power of being different. Curr. Opin. Microbiol. 25, 67–72 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Mahilkar, A., Venkataraman, P., Mall, A. & Saini, S. Experimental evolution of anticipatory regulation in Escherichia coli. Front. Microbiol. 12, 796228 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai, N., Kim, M. & Tagkopoulos, I. Understanding the formation and mechanism of anticipatory responses in Escherichia coli. Int. J. Mol. Sci. 23, 5985 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tagkopoulos, I., Liu, Y.-C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Delaney, J. M. Requirement of the Escherichia coli dnaK gene for thermotolerance and protection against H2O2. J. Gen. Microbiol. 136, 2113–2118 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Badrinarayanan, A., Le, T. B. K. & Laub, M. T. Bacterial chromosome organization and segregation. Annu. Rev. Cell Dev. Biol. 31, 171–199 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Thompson, S. R., Wadhams, G. H. & Armitage, J. P. The positioning of cytoplasmic protein clusters in bacteria. Proc. Natl Acad. Sci. USA 103, 8209–8214 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Reyes-Lamothe, R. & Sherratt, D. J. The bacterial cell cycle, chromosome inheritance and cell growth. Nat. Rev. Microbiol. 17, 467–478 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Birky, W. C. & Skavaril, R. V. Random partitioning of cytoplasmic organelles at cell division: the effect of organelle and cell volume. J. Theor. Biol. 106, 441–447 (1984).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ostovar, G. & Boedicker, J. Q. Phenotypic memory in quorum sensing. PLoS Comput. Biol. 20, e1011696 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ishihama, A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol. Rev. 34, 628–645 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Novick, A. & Weiner, M. Enzyme induction as an all-or-none phenomenon. Proc. Natl Acad. Sci. USA 43, 553–566 (1957).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sourjik, V. & Wingreen, N. S. Responding to chemical gradients: bacterial chemotaxis. Curr. Opin. Cell Biol. 24, 262–268 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Macnab, R. M. & Koshland, D. E. The gradient-sensing mechanism in bacterial chemotaxis. Proc. Natl Acad. Sci. USA 69, 2509–2512 (1972).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Goy, M. F., Springer, M. S. & Adler, J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc. Natl Acad. Sci. USA 74, 4964–4968 (1977).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stock, J. B. & Zhang, S. The biochemistry of memory. Curr. Biol. 23, R741–R745 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Krembel, A., Colin, R. & Sourjik, V. Importance of multiple methylation sites in Escherichia coli chemotaxis. PLoS ONE 10, e0145582 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalinin, Y. V., Jiang, L., Tu, Y. & Wu, M. Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J. 96, 2439–2448 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gosztolai, A. & Barahona, M. Cellular memory enhances bacterial chemotactic navigation in rugged environments. Commun. Phys. 3, 47 (2020).

    Article 

    Google Scholar
     

  • Govers, S. K., Mortier, J., Adam, A. & Aertsen, A. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 16, e2003853 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veening, J.-W. et al. Bet-hedging and epigenetic inheritance in bacterial cell development. Proc. Natl Acad. Sci. USA 105, 4393–4398 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bhattacharyya, S. et al. A heritable iron memory enables decision-making in Escherichia coli. Proc. Natl Acad. Sci. USA 120, e2309082120 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Riber, L. & Hansen, L. H. Epigenetic memories: the hidden drivers of bacterial persistence? Trends Microbiol 29, 190–194 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lim, H. N. & van Oudenaarden, A. A multistep epigenetic switch enables the stable inheritance of DNA methylation states. Nat. Genet. 39, 269–275 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Harms, A., Maisonneuve, E. & Gerdes, K. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Niu, H., Gu, J. & Zhang, Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct. Target Ther. 9, 174 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Y., Liu, S., Zhang, Y. & Zhang, W. DNA adenine methylation is involved in persister formation in E. coli. Microbiol. Res. 246, 126709 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Adam, M., Murali, B., Glenn, N. O. & Potter, S. S. Epigenetic inheritance based evolution of antibiotic resistance in bacteria. BMC Evol. Biol. 8, 52 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jõers, A. & Tenson, T. Growth resumption from stationary phase reveals memory in Escherichia coli cultures. Sci. Rep. 6, 24055 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyaue, S. et al. Bacterial memory of persisters: bacterial persister cells can retain their phenotype for days or weeks after withdrawal from colony–biofilm culture. Front. Microbiol. 9, 1396 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desmond, C., Stanton, C., Fitzgerald, G. F., Collins, K. & Paul Ross, R. Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int. Dairy J. 11, 801–808 (2001).

    Article 

    Google Scholar
     

  • Svenningsen, M. S., Svenningsen, S., Lo, Sørensen, M. A. & Mitarai, N. Existence of log-phase Escherichia coli persisters and lasting memory of a starvation pulse. Life Sci. Alliance 5, e202101076 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shmidov, E. et al. Multigenerational proteolytic inactivation of restriction upon subtle genomic hypomethylation in Pseudomonas aeruginosa. Nat. Microbiol. 10, 2498–2510 (2025).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Holloway, B. W. Variations in restriction and modification of bacteriophage following increase of growth temperature of Pseudomonas aeruginosa. Virology 25, 634–642 (1965).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ogle, K. et al. Quantifying ecological memory in plant and ecosystem processes. Ecol. Lett. 18, 221–235 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Palleja, A. et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol 3, 1255–1265 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Canarini, A. et al. Ecological memory of recurrent drought modifies soil processes via changes in soil microbial community. Nat. Commun. 12, 5308 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vompe, A. D. et al. Microbiome ecological memory and responses to repeated marine heatwaves clarify variation in coral bleaching and mortality. Glob. Change Biol. 30, e17088 (2024).

    Article 

    Google Scholar
     

  • Smith, M. B. et al. Natural bacterial communities serve as quantitative geochemical biosensors. mBio 6, e00326–15 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kuster, S. P. et al. Previous antibiotic exposure and antimicrobial resistance in invasive pneumococcal disease: results from prospective surveillance. Clin. Infect. Dis. 59, 944–952 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Stacy, A. et al. Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, 615–627.e17 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carmody, R. N. et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17, 72–84 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 8, 2218–2230 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khazaei, T. et al. Metabolic multistability and hysteresis in a model aerobe–anaerobe microbiome community. Sci. Adv. 6, eaba0353 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Louca, S. & Doebeli, M. Transient dynamics of competitive exclusion in microbial communities. Environ. Microbiol. 18, 1863–1874 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Debray, R. et al. Priority effects in microbiome assembly. Nat. Rev. Microbiol. 20, 109–121 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wallecha, A., Munster, V., Correnti, J., Chan, T. & van der Woude, M. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338–3347 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *