Laland, K. N. & O’Brien, M. J. Niche construction theory and archaeology. J. Archaeol. Method Th. 1, 20 (2010).
Rezek, Ž, Dibble, H. L., McPherron, S. P., Braun, D. R. & Lin, S. C. Two million years of flaking stone and the evolutionary efficiency of stone tool technology. Nat. Ecol. Evol. 2, 628–633 (2018).
Plummer, T. W. et al. Expanded geographic distribution and dietary strategies of the earliest Oldowan hominins and Paranthropus. Science 379, 561–566 (2023).
Toth, N. & Schick, K. An overview of the cognitive implications of the Oldowan Industrial Complex. Azania.: Archaeol. Res. Afr. 53, 3–39 (2018).
Plummer, T. W. & Finestone, E. Archeological sites from 2.6–2.0 Ma: towards a deeper understanding of the early Oldowan. in Rethinking Human Evolution (MIT Press, Cambridge, 2018).
Harmand, S. et al. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315 (2015).
Archer, W., Aldeias, V. & McPherron, S.P. What is ‘in situ’? a reply to Harmand et al. (2015). J. Hum. Evol. 142, 102740 (2020).
Carvalho, S. & Beardmore-Herd, M. Technological origins: primate perspectives and early hominin tool use in Africa. in Oxford Research Encyclopedia of African History (2019).
Proffitt, T., Reeves, J. S., Braun, D. R., Malaivijitnond, S. & Luncz, L. V. Wild macaques challenge the origin of intentional tool production. Sci. Adv. 9, eade8159 (2023).
Haslam, M. et al. Primate archaeology evolves. Nat. Ecol. Evolution 1, 1431–1437 (2017).
Villmoare, B. et al. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347, 1352–1355 (2015).
Braun, D. R. et al. Earliest known Oldowan artifacts at> 2.58 Ma from Ledi-Geraru, Ethiopia, highlight early technological diversity. Proc. Natl. Acad. Sci. 116, 11712–11717 (2019).
Semaw, S. et al. 2.6-Million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J. Hum. Evolution 45, 169–177 (2003).
Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: The transition to largeanimal exploitation by early hominins. Curr. Anthropol. 60, 1–23 (2019).
Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. evolution 1, 0159 (2017).
Zink, K. D. & Lieberman, D. E. Impact of meat and Lower Palaeolithic food processing techniques on chewing in humans. Nature 531, 500–503 (2016).
Brown, F. & Feibel, C. S. Stratigraphical notes on the Okote Tuff Complex at Koobi Fora, Kenya. Nature 316, 794–797 (1986).
Vondra, C. F. & Bowen, B. E. Stratigraphy, sedimentary facies and paleoenvironments, East Lake Turkana, Kenya. Geol. Soc. Lond. Spec. Publ. 6, 395 (1978).
Feibel, C. S. A geological history of the Turkana Basin. Evolut. Anthropol.: Issues, N., Rev. 20, 206–216 (2011).
Brown, F. H. & McDougall, I. Geochronology of the Turkana depression of Northern Kenya and Southern Ethiopia. Evolut. Anthropol.: Issues, N., Rev. 20, 217–227 (2011).
Kidney, C. L. Pliocene Stratigraphy and Geology of the Northeastern Ileret Region, Kenya. (The University of Utah, 2012).
Gathogo, P. N. & Brown, F. H. Stratigraphy of the koobi fora formation (Pliocene and Pleistocene) in the Ileret region of northern Kenya. J. Afr. E. Sci. 45, 369–390 (2006).
Bowen, B. E. et al. The Geology Of The Upper-cenozoic Sediments In The East Rudolf Embayment Of The Lake Rudolf Basin, Kenya. (Iowa State University, 1974).
Baldes, M. J., Raynolds, R. G. & Feibel, C. S. The Upper Burgi Unconformity: A major hiatus in the fossiliferous Koobi Fora formation identified in area 116, east Turkana, Kenya. J. Afr. Earth Sci. 210, 105135 (2023).
McDougall, I. & Brown, F. H. Precise 40Ar/39Ar geochronology for the upper Koobi Fora Formation, Turkana Basin, northern Kenya. J. Geol. Soc. 163, 205–220 (2006).
Kuiper, K. et al. Synchronizing rock clocks of Earth history. science 320, 500–504 (2008).
Brown, F. H. & Cerling, T. E. Stratigraphical significance of the Tulu Bor Tuff of the Koobi Fora Formation. Nature 299, 212–215 (1982).
Boës, X. et al. Lake-level changes and hominin occupations in the arid Turkana basin during volcanic closure of the Omo River outflows to the Indian Ocean. Quat. Res. 91, 892–909 (2019).
Joordens, J. C. A. et al. An astronomically-tuned climate framework for hominins in the Turkana Basin. Earth Planet. Sci. Lett. 307, 1–8 (2011).
Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G. The Geologic Time Scale 2012. (Elsevier, 2012).
Hatfield, R. G., Stoner, J. S. & Fraass, A. J. Relative paleointensity record of integrated ocean drilling program site U1396 in the Caribbean Sea: geomagnetic and chronostratigraphic observations in the Pliocene. Geochem Geophys Geosyst 22, e2021GC009677 (2021).
Channell, J. E., Singer, B. S. & Jicha, B. R. Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives. Quat. Sci. Rev. 228, 106114 (2020).
Proffitt, T. et al. Wild monkeys flake stone tools. Nature 539, 85–88 (2016).
Karp, A. T. et al. Nonlinear rainfall effects on savanna fire activity across the African Humid Period. Quat. Sci. Rev. 304, 107994 (2023).
Nesbitt, H. W. & Young, G. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. nature 299, 715–717 (1982).
Fedo, C. M., Wayne Nesbitt, H. & Young, G. M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–924 (1995).
Yang, D. et al. Why the long teeth? morphometric analysis suggests different selective pressures on functional occlusal traits in Plio-Pleistocene African suids. Paleobiology 48, 655–676 (2022).
Harris, J. M. & Cerling, T. E. Dietary adaptations of extant and Neogene African suids. J. Zool. 256, 45–54 (2002).
Feibel, C. S., Brown, F. H. & McDougall, I. Stratigraphic context of fossil hominids from the Omo group deposits: northern Turkana basin, Kenya and Ethiopia. Am. J. Phys. Anthropol. 78, 595–622 (1989).
Buchanan, M. J. et al. Stratigraphic and structural geology of Area 117, Koobi Fora region, northern Kenya. (University of Utah, Salt Lake City, 2010).
Toth, N. Oldowan reassessed: a close look at early stone artifacts. J. Archaeol. Sci. 12, 101–120 (1985).
Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P. & Bishop, L. C. Raw material quality and Oldowan hominin toolstone preferences: evidence from Kanjera South, Kenya. J. Archaeol. Sci. 36, 1605–1614 (2009).
Archer, W. et al. A geometric morphometric relationship predicts stone flake shape and size variability. Archaeol. Anthropol. Sci. 10, 1991–2003 (2018).
Pargeter, J., Khreisheh, N., Shea, J. J. & Stout, D. Knowledge vs. know-how? Dissecting the foundations of stone knapping skill. J. Hum. Evol. 145, 102807 (2020).
Key, A. & Proffitt, T. Revising the oldest Oldowan: Updated optimal linear estimation models and the impact of Nyayanga (Kenya). J. Hum. Evol. 186, 103468 (2024).
Villaseñor, A. et al. Pliocene hominins from East Turkana were associated with mesic environments in a semiarid basin. J. Hum. Evol. 180, 103385 (2023).
Nutz, A., Schuster, M., Boës, X. & Rubino, J.-L. Orbitally-driven evolution of Lake Turkana (Turkana Depression, Kenya, EARS) between 1.95 and 1.72 Ma: a sequence stratigraphy perspective. J. Afr. Earth Sci. 125, 230–243 (2017).
Negash, E. W. et al. Dietary trends in herbivores from the Shungura Formation, southwestern Ethiopia. Proc. Natl. Acad. Sci. 117, 21921–21927 (2020).
Maslin, M. A. & Trauth, M. H. Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. in 151–158 (Springer, 2009).
Levin, N. E., Brown, F. H., Behrensmeyer, A. K., Bobe, R. & Cerling, T. Paleosol carbontaes form the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 307, 75–89 (2011).
Bobe, R. & Eck, G. G. Responses of African bovids to pliocene climatic change. Paleobiology 27, 1–47 (2001).
Nutz, A. et al. Plio-Pleistocene sedimentation in West Turkana (Turkana Depression, Kenya, East African Rift System): Paleolake fluctuations, paleolandscapes and controlling factors. Earth-Sci. Rev. 211, 103415 (2020).
Trauth, M. H., Larrasoaña, J. C. & Mudelsee, M. Trends, rhythms and events in Plio-Pleistocene African climate. Quat. Sci. Rev. 28, 399–411 (2009).
Trauth, M. H. et al. Northern hemisphere glaciation, African climate and human evolution. Quat. Sci. Rev. 268, 107095 (2021).
Alemseged, Z. et al. Fossils from mille-logya, afar, ethiopia, elucidate the link between pliocene environmental changes and homo origins. Nat. Commun. 11, 2480 (2020).
Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. PNAS 108, 6509–6514 (2011).
Wynn, J. G. et al. Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: Faunal evidence from Hadar, Ethiopia. J. Hum. evolution 99, 93–106 (2016).
Plummer, T. et al. Flaked stones and old bones: Biological and cultural evolution at the dawn of technology. Am. J. Phys. Anthropol. 39, 118–164 (2004).
Demenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).
Feakins, S. J., Eglinton, T. I. & demenocal, P. B. A comparison of biomarker records of northeast African vegetation from lacustrine and marine sediments (ca. 3.40 Ma). Org. Geochem. 38, 1607–1624 (2007).
O’Dea, A. et al. Formation of the Isthmus of Panama. Sci. Adv. 2, e1600883 (2016).
Haug, G. & Tiedemann, P. Simulating late Pliocene Northern Hemisphere climate with the LLN 2—D model. GEOPHYSICAL RESEARCH LETTERS 25, 915–918 (1998).
Dowsett, H. Faunal re-evaluation of Mid-Pliocene conditions in the western equatorial Pacific. Micropaleontology 53, 447–456 (2007).
Bridges, J. D., Tarduno, J. A., Cottrell, R. D. & Herbert, T. D. Rapid strengthening of westerlies accompanied intensification of Northern Hemisphere glaciation. Nat. Commun. 14, 3905 (2023).
Vallé, F., Dupont, L. M., Leroy, S. A. G., Schefuß, E. & Wefer, G. Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP Sites 659 and 658). Palaeogeogr., Palaeoclimatol. 414, 403–414 (2014).
Wynn, J. G. et al. Isotopic evidence for the timing of the dietary shift toward C4 foods in eastern African Paranthropus. Proc. Natl. Acad. Sci. 117, 21978–21984 (2020).
Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proceedings of the National Academy of Sciences https://doi.org/10.1073/pnas.1222579110 (2013).
DiMaggio, E. N. et al. Late Pliocene fossiliferous sedimentary record and the environmental context of early Homo from Afar, Ethiopia. Science 347, 1355–1359 (2015).
Plummer, T. W. et al. Bovid ecomorphology and hominin paleoenvironments of the Shungura Formation, lower Omo River Valley, Ethiopia. J. Hum. Evolution 88, 108–126 (2015).
Patterson, D. et al. Ecosystem evolution and hominin paleobiology at East Turkana, northern Kenya between 2.0 and 1.4 Ma. Palaeogeogr., Palaeoclimatol., Palaeoecol. 481, 1–13 (2017).
Villmoare, B. et al. Response to Comment on “Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 348, 1326–1326 (2015).
Davies, T. W. et al. Dental morphology in Homo habilis and its implications for the evolution of early Homo. Nat. Commun. 15, 286 (2024).
Leakey, R. E. F. & Walker, A. C. Further hominids from the Plio-Pleistocene of Koobi Fora, Kenya. in American journal of physical anthropology 67, 135–163, ill (New York, 1985).
Davies, T. W. et al. Accessory cusp expression at the enamel-dentine junction of hominin mandibular molars. PeerJ 9, e11415 (2021).
Koops, K., Visalberghi, E. & van Schaik, C. P. The ecology of primate material culture. Biol. Lett. 10, 20140508 (2014).
McPherron, S. P. et al. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466, 857–860 (2010).
Dominguez- Rodrigo, M., Pickering, R. & Bunn, H. T. Configurational approach to identifying earliest hominin butchers. Proc. Natl. Acad. Sci. 107, 20929–20934 (2010).
Rolian, C. & Carvalho, S. 17. Tool Use and Manufacture in the Last Common Ancestor of Pan and Homo. Chimpanzees and Human Evolution 602–644 (Harvard University Press, 2018).
Stout, D., Quade, J., Semaw, S., Rogers, M. J. & Levin, N. E. Raw material selectivity of the earliest stone toolmakers at Gona, Afar, Ethiopia. J. Hum. Evol. 48, 365–380 (2005).
Eren, M. I., Roos, C. I., Story, B. A., von Cramon-Taubadel, N. & Lycett, S. J. The role of raw material differences in stone tool shape variation: an experimental assessment. J. Archaeol. Sci. 49, 472–487 (2014).
Bobe, R. & Carvalho, S. Hominin diversity and high environmental variability in the Okote Member, Koobi Fora Formation, Kenya. J. Hum. Evol. 126, 91–105 (2019).
Luncz, L. V., Arroyo, A., Falótico, T., Quinn, P. & Proffitt, T. A primate model for the origin of flake technology. J. Hum. Evol. 171, 103250 (2022).
Brown, K. S. et al. Fire as an engineering tool of early modern humans. Science 325, 859–862 (2009).
McPherron, S. J. Artifact orientations and site formation processes from total station proveniences. J. Archaeol. Sci. 32, 1003–1014 (2005).
Koymans, M. R., van Hinsbergen, D. J. J., Pastor-Galán, D., Vaes, B. & Langereis, C. G. Towards FAIR paleomagnetic data management through paleomagnetism.org 2.0. Geochem., Geophys. Geosyst. 21, e2019GC008838 (2020).
Kirschvink, J. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 62, 699–718 (1980).
Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem. 20, 1303–1306 (1993).
International Committee for Phytolith Taxonomy (ICPT) International Code for Phytolith Nomenclature (ICPN) 2.0. Ann. Bot. 124, 189–199 (2019).
Piperno, D. R. Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists. (Rowman Altamira, 2006).
Bobe, R., Behrensmeyer, A. K., Eck, G. G. & Harris, J. M. Patterns of abundance and diversity in late Cenozoic bovids from the Turkana and Hadar Basins, Kenya and Ethiopia Hominin Environments in the East African Pliocene: An Assessment of the Faunal Evidence. in (eds. Bobe, R., Alemseged, Z. & Behrensmeyer, A. K.) 129–157 (Springer Netherlands, 2007).
Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl. Acad. Sci. USA. 114, 7331–7336 (2017).
Paquette, J. & Drapeau, M. S. M. Environmental comparisons of the Awash Valley, Turkana Basin and lower Omo Valley from upper Miocene to Holocene as assessed from stable carbon and oxygen isotopes of mammalian enamel. Palaeogeogr., Palaeoclimatol. 562, 110099 (2021).
Quinn, R. L., Lepre, C. J., Wright, J. D. & Feibel, C. S. Paleogeographic variations of pedogenic carbonate 13C values from Koobi Fora, Kenya: implications for floral compositions of Plio-Pleistocene hominin environments. J. Hum. Evol. 53, 560–573 (2007).
Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evolution 3, 1048–1056 (2019).
NOAA National Centers for Environmental Information. ETOPO 2022 15 Arc-second global relief model. https://doi.org/10.25921/fd45-gt74 (2022).
McDougall, I. et al. New single crystal 40 Ar/ 39 Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. JGS 169, 213–226 (2012).
Kimbel, W. H. et al. Late PlioceneHomoand Oldowan tools from the Hadar Formation (Kada Hadar Member), Ethiopia. J. Hum. Evolution 31, 549–561 (1996).
Villmoare, B. et al. New discoveries of Australopithecus and Homo from Ledi-Geraru, Ethiopia. Nature 1–7 https://doi.org/10.1038/s41586-025-09390-4 (2025).
Raffi, I. et al. The Neogene period. in Geologic time scale 2020, 1141–1215 (Elsevier, 2020).
Trauth, M. H. et al. Human evolution in a variable environment: the amplifier lakes of Eastern Africa. Quat. Sci. Rev. 29, 2981–2988 (2010).
Maslin, M. A. et al. East African climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).
Isaac, G. L. Koobi Fora Research Project Vol 5: Plio-Pleistocene Archaeology. 5, Plio-Pleistocene Archaeology (Clarendon Press, Oxford, 1997).
Source link