Discovery and artificial intelligence-guided mechanistic elucidation of a narrow-spectrum antibiotic

  • Maddamsetti, R. et al. Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Nat. Commun. 15, 1449 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, G. & Stokes, J. M. A brief guide to machine learning for antibiotic discovery. Curr. Opin. Microbiol. 69, 102190 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Naghavi, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404, 1199–1226 (2024).

    Article 

    Google Scholar
     

  • O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Review on Antimicrobial Resistance (HM Government & Wellcome Trust, 2014).

  • Hawkey, P. M. et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J. Antimicrob. Chemother. 73, iii2–iii78 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tzouvelekis, L. S., Markogiannakis, A., Psichogiou, M., Tassios, P. T. & Daikos, G. L. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin. Microbiol. Rev. 25, 682–707 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ordooei Javan, A., Shokouhi, S. & Sahraei, Z. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 71, 801–810 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J. et al. Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect. Dis. 6, 589–601 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nitzan, O., Elias, M., Peretz, A. & Saliba, W. Role of antibiotics for treatment of inflammatory bowel disease. World J. Gastroenterol. 22, 1078–1087 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zangara, M. T., Darwish, L. & Coombes, B. K. Characterizing the pathogenic potential of Crohn’s disease-associated adherent-invasive Escherichia coli. EcoSal Plus 11, eesp-0018-2022 (2023).

  • Levy, M., Kolodziejczyk, A. A., Thaiss, C. A. & Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 17, 219–232 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Baumgart, M. et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 1, 403–418 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Morgan, X. C. et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13, R79 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang, X. et al. Structural basis for bacterial lipoprotein relocation by the transporter LolCDE. Nat. Struct. Mol. Biol. 28, 347–355 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baron, A. P. et al. Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. eLife 5, e12187 (2016).

  • King, A. M. et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510, 503–506 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ricci, D. P. & Silhavy, T. J. The Bam machine: a molecular cooper. Biochim. Biophys. Acta 1818, 1067–1084 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Blair, J. M. & Piddock, L. J. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr. Opin. Microbiol 12, 512–519 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cox, G. et al. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24, 98–109 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • French, S. et al. Potentiation of antibiotics against Gram-negative bacteria by polymyxin B analogue SPR741 from unique perturbation of the outer membrane. ACS Infect. Dis. 6, 1405–1412 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Macnair, C. R. & Brown, E. D. Outer membrane disruption overcomes intrinsic, acquired, and spontaneous antibiotic resistance. mBio 11, e01615-20 (2020).

  • Zurawski, D. V. et al. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 61, e01239-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckburg, P. B. et al. Safety, tolerability, pharmacokinetics, and drug interaction potential of SPR741, an intravenous potentiator, after single and multiple ascending doses and when combined with β-lactam antibiotics in healthy subjects. Antimicrob. Agents Chemother. 63, e00892-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Breidenstein, E. B. M. et al. SMT-738: a novel small-molecule inhibitor of bacterial lipoprotein transport targeting Enterobacteriaceae. Antimicrob. Agents Chemother. 68, e00695-23 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nayar, A. S. et al. Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay. J. Bacteriol. 197, 1726–1734 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lorenz, C., Dougherty, T. J. & Lory, S. Correct sorting of lipoproteins into the inner and outer membranes of Pseudomonas aeruginosa by the Escherichia coli LolCDE transport system. mBio 10, e00194-19 (2019).

  • Nickerson, N. N. et al. A novel inhibitor of the LolCDE ABC transporter essential for lipoprotein trafficking in Gram-negative bacteria. Antimicrob. Agents Chemother. 62, e02151-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz, K. A. et al. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 630, 429–436 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Corso, G., Stärk, H., Jing, B., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. Preprint at https://arxiv.org/abs/2210.01776 (2022).

  • Corso, G. et al. Deep confident steps to new pockets: strategies for docking generalization. Preprint at https://arxiv.org/abs/2402.18396 (2024).

  • Fan, J., Fu, A. & Zhang, L. Progress in molecular docking. Quant. Biol. 7, 83–89 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bonev, B., Hooper, J. & Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 61, 1295–1301 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Tokuda, H. & Matsuyama, S. I. Sorting of lipoproteins to the outer membrane in E. coli. Biochim. Biophys. Acta 1693, 5–13 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nicholson, W. L. & Maughan, H. The spectrum of spontaneous rifampin resistance mutations in the rpoB gene of Bacillus subtilis 168 spores differs from that of vegetative cells and resembles that of Mycobacterium tuberculosis. J. Bacteriol. 184, 4936–4940 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cho, S. H. et al. Detecting envelope stress by monitoring β-barrel assembly. Cell 159, 1652–1664 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hussein, N. A. et al. Distinct domains of Escherichia coli IgaA connect envelope stress sensing and down-regulation of the Rcs phosphorelay across subcellular compartments. PLoS Genet. 14, e1007398 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peters, J. M. et al. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165, 1493–1506 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lacour, S., Bechet, E., Cozzone, A. J., Mijakovic, I. & Grangeasse, C. Tyrosine phosphorylation of the UDP-glucose dehydrogenase of Escherichia coli is at the crossroads of colanic acid synthesis and polymyxin resistance. PLoS ONE 3, e3053 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayol, A. et al. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob. Agents Chemother. 58, 4762–4766 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dößelmann, B. et al. Rapid and consistent evolution of colistin resistance in extensively drug-resistant Pseudomonas aeruginosa during morbidostat culture. Antimicrob. Agents Chemother. 61, e00043-17 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Small, C. L. N., Reid-Yu, S. A., McPhee, J. B. & Coombes, B. K. Persistent infection with Crohn’s disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nat. Commun. 4, 1957 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Shaler, C. R., et al. Psychological stress impairs IL22-driven protective gut mucosal immunity against colonising pathobionts. Nat. Commun. 12, 6664 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bernstein, C. N. Antibiotic use and the risk of Crohn’s disease. Gastroenterol. Hepatol. 9, 393–395 (2013).


    Google Scholar
     

  • Oberc, A. M., Fiebig-Comyn, A. A., Tsai, C. N., Elhenawy, W. & Coombes, B. K. Antibiotics potentiate adherent-invasive E. coli infection and expansion. Inflamm. Bowel Dis. 25, 711–721 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, L., Benson, M. L., Smith, R. D., Lerner, M. G. & Carlson, H. A. Binding MOAD (Mother Of All Databases). Proteins 60, 333–340 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Polizzi, N. F. & DeGrado, W. F. A defined structural unit enables de novo design of small-molecule-binding proteins. Science 369, 1227–1233 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Catacutan, D. B., Alexander, J., Arnold, A. & Stokes, J. M. Machine learning in preclinical drug discovery. Nat. Chem. Biol. 20, 960–973 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gentile, F. et al. Deep Docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent. Sci. 6, 939–949 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Arnold, A., McLellan, S. & Stokes, J. M. How AI can help us beat AMR. NPJ Antimicrob. Resist. 3, 18 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swanson, K. et al. Generative AI for designing and validating easily synthesizable and structurally novel antibiotics. Nat. Mach. Intell. 6, 338–353 (2024).

  • Godinez, W. J. et al. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 4, 180–186 (2022).

    Article 

    Google Scholar
     

  • Shi, C. et al. GraphAF: a flow-based autoregressive model for molecular graph generation. Preprint at https://arxiv.org/abs/2001.09382 (2020).

  • Hoogeboom, E., Satorras, V. G., Vignac, C. & Welling, M. Equivariant diffusion for molecule generation in 3D. Proc. Mach. Learn. Res. 162, 8867–8887 (2022).


    Google Scholar
     

  • Grisoni, F. et al. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci. Adv. 7, 3338–3349 (2021).

    Article 

    Google Scholar
     

  • Swanson, K. et al. SyntheMol-RL: a flexible reinforcement learning framework for designing novel and synthesizable antibiotics. Preprint at bioRxiv https://doi.org/10.1101/2025.05.17.654017 (2025).

  • Mangat, C. S., Bharat, A., Gehrke, S. S. & Brown, E. D. Rank ordering plate data facilitates data visualization and normalization in high-throughput screening. J. Biomol. Screen. 19, 1314–1320 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggiora, G., Vogt, M., Stumpfe, D. & Bajorath, J. Molecular similarity in medicinal chemistry. J. Med. Chem. 57, 3186–3204 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sharma, A. & Lal, S. P. Tanimoto based similarity measure for intrusion detection system. J. Inf. Secur. 2, 195–201 (2011).


    Google Scholar
     

  • Zdrazil, B. et al. The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Res. 52, D1180–D1192 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • O’Shea, R. & Moser, H. E. Physicochemical properties of antibacterial compounds: implications for drug discovery. J. Med. Chem. 51, 2871–2878 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, R., Fang, X., Lu, Y., Yang, C.-Y. & Wang, S. The PDBbind Database: methodologies and updates. J. Med. Chem. 48, 4111–4119 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cheng, H. et al. ECOD: an evolutionary classification of protein domains. PLoS Comput. Biol. 10, e1003926 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Passaro, S. et al. Boltz-2: towards accurate and efficient binding affinity prediction. Preprint at bioRxiv https://doi.org/10.1101/2025.06.14.659707 (2025).

  • Chai Discovery Team et al. Chai-1: decoding the molecular interactions of life. Preprint at bioRxiv https://doi.org/10.1101/2024.10.10.615955 (2024).

  • McNutt, A. T., Li, Y., Meli, R., Aggarwal, R. & Koes, D. R. GNINA 1.3: the next increment in molecular docking with deep learning. J. Cheminform. 17, 28 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Riniker, S. & Landrum, G. A. Better informed distance geometry: using what we know to improve conformation generation. J. Chem. Inf. Model. 55, 2562–2574 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Calvo-Villamañán, A. et al. On-target activity predictions enable improved CRISPR–dCas9 screens in bacteria. Nucleic Acids Res. 48, e64 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depardieu, F. & Bikard, D. Gene silencing with CRISPRi in bacteria and optimization of dCas9 expression levels. Methods 172, 61–75 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Beal, S. L. Ways to fit a PK model with some data below the quantification limit. J. Pharmacokinet. Pharmacodyn. 28, 481–504 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dhaliwal, J. et al. Outcomes following acute severe colitis at initial presentation: a multi-centre, prospective, paediatric cohort study. J. Crohns Colitis 18, 233–245 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 

    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lahti, L. & Shetty, S. Microbiome Analytics (Bioconductor, 2017); https://doi.org/10.18129/B9.bioc.microbiome

  • Wickham, H. Reshaping data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).

    Article 

    Google Scholar
     

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar
     

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar
     

  • Searle, S. R., Speed, F. M. & Milliken, G. A. Population marginal means in the linear model: an alternative to least squares means. Am. Stat. 34, 216–221 (1980).

    Article 

    Google Scholar
     

  • Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8, 352–359 (2016).

    Article 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stephens, M. False discovery rates: a new deal. Biostatistics https://doi.org/10.1093/biostatistics/kxw041 (2016).

  • Keseler, I. M. et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 41, D605–D612 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karp, P. D. Pathway databases: a case study in computational symbolic theories. Science 293, 2040–2044 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Karp, P. D. et al. Pathway Tools version 23.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 22, 109–126 (2021).

    Article 
    PubMed 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *