Srama, R. et al. The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 114, 465–518 (2004).
Waite, J. H. et al. The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Sci. Rev. 114, 113–231 (2004).
Esposito, L. W. et al. The Cassini Ultraviolet Imaging Spectrograph investigation. Space Sci. Rev. 115, 299–361 (2004).
Waite Jr, J. H. et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009).
Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).
Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).
Postberg, F., Schmidt, J., Hillier, J., Kempf, S. & Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).
Postberg, F. et al. Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018).
Postberg, F. et al. Detection of phosphates originating from Enceladus’s ocean. Nature 618, 489–493 (2023).
Khawaja, N. et al. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 489, 5231–5243 (2019).
Hansen, C. J. et al. The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations. Icarus 344, 113461 (2020).
Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).
Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).
Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).
Thomas, P. C. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).
Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).
Peter, J. S., Nordheim, T. A. & Hand, K. P. Detection of HCN and diverse redox chemistry in the plume of Enceladus. Nat. Astron. 8, 164–173 (2024).
Ershova, A. et al. Modeling the Enceladus dust plume based on in situ measurements performed with the Cassini Cosmic Dust Analyzer. Astron. Astrophys. 689, A114 (2024).
Kempf, S. et al. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 195–223 (Univ. of Arizona Press, 2018).
Srama, R. et al. The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space J. 2, 3–16 (2011).
Linti, S. et al. Cassini’s CDA observes a variety of dust populations just outside Saturn’s main rings. Mon. Not. R. Astron. Soc. 529, 3121–3139 (2024).
Nölle, L. et al. Radial compositional profile of Saturn’s E ring indicates substantial space weathering effects. Mon. Not. R. Astron. Soc. 527, 8131–8139 (2024).
Postberg, F. et al. The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008).
Klenner, F. et al. Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Commun. Mass Spectrom. 33, 1751–1760 (2019).
Perry, M. E. et al. Cassini INMS measurements of Enceladus plume density. Icarus 257, 139–162 (2015).
Postberg, F. et al. Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57, 1359–1374 (2009).
Khawaja, N. et al. Complementary mass spectral analysis of isomeric O-bearing organic compounds and fragmentation differences through analog techniques for spaceborne mass spectrometers. Planet. Sci. J. l 3, 254 (2022).
McLafferty, F. W. & Turecek, F. Interpretation of Mass Spectra 4th edn (Univ. Science Books, 1993).
Dass, C. Fundamentals of Contemporary Mass Spectrometry 1st edn (John Wiley and Sons, 2007).
Liu, C. et al. The potential for organic synthesis in the ocean of Enceladus. Astrophys. J. 971, 51 (2024).
Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002).
Trinks, H., Schröder, W. & Biebricher, C. K. Ice and the origin of life. Orig. Life Evol. Biosph. 35, 429–445 (2005).
Menor‐Salván, C., Ruiz‐Bermejo, M., Osuna‐Esteban, S., Muñoz‐Caro, G. & Veintemillas‐Verdaguer, S. Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario. Chem. Biodivers. 5, 2729–2739 (2008).
Zhou, Y. et al. Selective exclusion of aromatic organic carbon during lake ice formation. Geophys. Res. Lett. 50, e2022GL101414 (2023).
Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).
McCollom, T. M., Seewald, J. S. & Simoneit, B. R. T. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 65, 455–468 (2001).
Luther, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL094869 (2021).
McCollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).
Konn, C. et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol. 258, 299–314 (2009).
Xu, H. et al. Organic compounds in geological hydrothermal systems: a critical review of molecular transformation and distribution. Earth Sci. Rev. 252, 104757 (2024).
Xu, H. et al. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem. Geol. 608, 121045 (2022).
Burchell, M. J. & Armes, S. P. Impact ionisation spectra from hypervelocity impacts using aliphatic poly(methyl methacrylate) microparticle projectiles. Rapid Commun. Mass Spectrom. 25, 543–550 (2011).
Mumma, M. J. & Charnley, S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).
Goesmann, F. et al. Organic compounds on comet 67P/Churyumov–Gerasimenko revealed by COSAC mass spectrometry. Science 349, aab0689 (2015).
Schulte, M. D. & Shock, E. L. Aldehydes in hydrothermal solution: standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim. Cosmochim. Acta 57, 3835–3846 (1993).
Kim, S. M., Kim, Y. S., Kim, D. W., Rios, R. & Yang, J. W. Acetaldehyde: a small organic molecule with big impact on organocatalytic reactions. Chem. A Eur. J. 22, 2214–2234 (2016).
Naraoka, H., Yamashita, Y., Yamaguchi, M. & Orthous-Daunay, F.-R. Molecular evolution of N-containing cyclic compounds in the parent body of the Murchison meteorite. Am. Chem. Soc. Earth Space Chem. 1, 540–550 (2017).
Diederich, P. et al. Formation, stabilization and fate of acetaldehyde and higher aldehydes in an autonomously changing prebiotic system emerging from acetylene. Commun. Chem. 6, 38 (2023).
Pentsak, E. O., Murga, M. S. & Ananikov, V. P. Role of acetylene in the chemical evolution of carbon complexity. Am. Chem. Soc. Earth Space Chem. 8, 798–856 (2024).
Biver, N. & Bockelée-Morvan, D. Complex organic molecules in comets from remote-sensing observations at millimeter wavelengths. Am. Chem. Soc. Earth Space Chem. 3, 1550–1555 (2019).
Glavin, D. P. et al. in Primitive Meteorites and Asteroids: Physical, Chemical and Spectroscopic Observations Paving the Way to Exploration (ed. Abreu, N.) 205–271 (Elsevier, 2018).
Bradley, A. S., Fredricks, H., Hinrichs, K.-U. & Summons, R. E. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Org. Geochem. 40, 1169–1178 (2009).
Rushdi, A. I. & Simoneit, B. R. T. Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions. Astrobiology 4, 211–224 (2004).
Fernández-García, C., Coggins, A. J. & Powner, M. W. A chemist’s perspective on the role of phosphorus at the origins of life. Life 7, 31 (2017).
Aspin, A., Smith, B., Burcar, E., Firestone, Z. & Yang, Z. Experimental and theoretical investigation of alkene transformations in oceanic hydrothermal fluids: a mechanistic study of styrene. Geophys. l Res. Lett. 50, e2023GL103738 (2023).
Mikula, R. et al. Impact ionization mass spectra of polypyrrole-coated anthracene microparticles: a useful mimic for cosmic polycyclic aromatic hydrocarbon dust. Am. Chem. Soc. Earth Space Chem. 8, 586–605 (2024).
Jaramillo-Botero, A. et al. Understanding hypervelocity sampling of biosignatures in space missions. Astrobiology 21, 421–442 (2021).
Schulze, J. A. et al. Effect of salts on the formation and hypervelocity-induced fragmentation of icy clusters with embedded amino acids. Am. Chem. Soc. Earth Space Chem. 7, 168–181 (2023).
Klenner, F. et al. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. Astrobiology 20, 179–189 2065 (2020).
Hillier, J. K., Fiege, K., Trieloff, M. & Srama, R. Numerical modelling of mineral impact ionisation spectra. Planet. Space Sci. 89, 159–166 (2013).
Mocker, A. et al. On the application of a linear time-of-flight mass spectrometer for the investigation of hypervelocity impacts of micron and sub-micron sized dust particles. Planet. Space Sci. 89, 47–57 (2013).
Kempf, S. et al. SUDA: a SUrface Dust Analyser for compositional mapping of the Galilean moon Europa. Space Sci. Rev. 221, 10 (2025).
Simolka, J. et al. The DESTINY(+) Dust Analyser—a dust telescope for analysing cosmic dust dynamics and composition. Philos. Trans. R. Soc. A 382, 20230199 (2024).
Klenner, F. et al. How to identify cell material in a single ice grain emitted from Enceladus or Europa. Sci. Adv. 10, eadl0849 (2024).
Magee, B. A. & Waite, J. H. Neutral gas composition of Enceladus’ plume—model parameter insights from Cassini-INMS. In 48th Lunar and Planetary Science Conference, 2974 (Universities Space Research Association, 2017).
Postberg, F. et al. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 129–162 (Univ. of Arizona Press, 2018).
Sarma, N. S. et al. Hydrothermal alteration promotes humic acid formation in sediments: a case study of the Central Indian Ocean Basin. J. Geophys. Res. Oceans 123, 110–130 (2018).
Sinha, S. & Raj, A. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study. Phys. Chem. Chem. Phys. 18, 8120–8131 (2016).
Reizer, E., Viskolcz, B. & Fiser, B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: a mini-review. Chemosphere 291, 132793 (2022).
Chen, P. et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein. Sci. Total Environ. 828, 154440 (2022).
Denney, D. B. & Denney, D. Z. Studies of the mechanisms of the reactions of benzoyl peroxide with secondary amines and phenols. J. Am. Chem. Soc. 82, 1389–1393 (1960).
El-Baz, H. A. et al. Enzymatic synthesis of glucose fatty acid esters using SCOs as acyl group-donors and their biological activities. Appl. Sci. 11, 2700 (2021).
Habib, U., Riaz, M. & Hofmann, M. Unraveling the way acetaldehyde is formed from acetylene: a study based on DFT. Am. Chem. Soc. Omega 6, 6924–6933 (2021).
Cedillo, L. et al. Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans. eLife 12, e82210 (2023).
Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. G. & Russell, M. J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl Acad. Sci. USA 116, 4828–4833 (2019).
Koga, T. & Naraoka, H. Synthesis of amino acids from aldehydes and ammonia: implications for organic reactions in carbonaceous chondrite parent bodies. Am. Chem. Soc. Earth Space Chem. 6, 1311–1320 (2022).
Miller, S. L. & Van Trump, J. E. The Strecker synthesis in the primitive ocean. In Origin of Life (ed. Wolman, Y.) 135–141 (Springer Netherlands, 1981).
Pizzarello, S. Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry: catalytic syntheses of amino acids. Meteorit. Planet. Sci. 47, 1291–1296 (2012).
Schwander, L. et al. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front. Microbiol. 14, 1257597 (2023).
Al-Faze, R., Kozhevnikova, E. F. & Kozhevnikov, I. V. Diethyl ether conversion to ethene and ethanol catalyzed by heteropoly acids. Am. Chem. Soc. Omega 6, 9310–9318 (2021).
Groeneveld, G., Kuijer, S. & De Puit, M. Preparation of cyanoacrylate derivatives and comparison of dual action cyanoacrylate formulations. Sci. Justice 54, 42–48 (2014).
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).
Jeilani, Y. A., Fearce, C. & Nguyen, M. T. Acetylene as an essential building block for prebiotic formation of pyrimidine bases on Titan. Phys. Chem. Chem. Phys. 17, 24294–24303 (2015).
Perrero, J. et al. Non-energetic formation of ethanol via CCH reaction with interstellar H2O ices. A computational chemistry study. Am. Chem. Soc. Earth Space Chem. 6, 496–511 (2022).
Cairns, T. L., Sauer, J. C. & Wilkinson, W. K. Synthesis of pyrimidines and pyridines from acetylene and nitriles. J. Am. Chem. Soc. 74, 3989–3992 (1952).
Ma, Y. et al. Direct conversion of methane to ethylene and acetylene over an iron-based metal–organic framework. J. Am. Chem. Soc. 145, 20792–20800 (2023).
Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (2002).
Source link