Detection of organic compounds in freshly ejected ice grains from Enceladus’s ocean

  • Srama, R. et al. The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 114, 465–518 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Waite, J. H. et al. The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Sci. Rev. 114, 113–231 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Esposito, L. W. et al. The Cassini Ultraviolet Imaging Spectrograph investigation. Space Sci. Rev. 115, 299–361 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Waite Jr, J. H. et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Postberg, F., Schmidt, J., Hillier, J., Kempf, S. & Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Postberg, F. et al. Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Postberg, F. et al. Detection of phosphates originating from Enceladus’s ocean. Nature 618, 489–493 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Khawaja, N. et al. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 489, 5231–5243 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Hansen, C. J. et al. The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations. Icarus 344, 113461 (2020).

    Article 

    Google Scholar
     

  • Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Thomas, P. C. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Peter, J. S., Nordheim, T. A. & Hand, K. P. Detection of HCN and diverse redox chemistry in the plume of Enceladus. Nat. Astron. 8, 164–173 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ershova, A. et al. Modeling the Enceladus dust plume based on in situ measurements performed with the Cassini Cosmic Dust Analyzer. Astron. Astrophys. 689, A114 (2024).

    Article 

    Google Scholar
     

  • Kempf, S. et al. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 195–223 (Univ. of Arizona Press, 2018).

  • Srama, R. et al. The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space J. 2, 3–16 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Linti, S. et al. Cassini’s CDA observes a variety of dust populations just outside Saturn’s main rings. Mon. Not. R. Astron. Soc. 529, 3121–3139 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Nölle, L. et al. Radial compositional profile of Saturn’s E ring indicates substantial space weathering effects. Mon. Not. R. Astron. Soc. 527, 8131–8139 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Postberg, F. et al. The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Klenner, F. et al. Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Commun. Mass Spectrom. 33, 1751–1760 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Perry, M. E. et al. Cassini INMS measurements of Enceladus plume density. Icarus 257, 139–162 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Postberg, F. et al. Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57, 1359–1374 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Khawaja, N. et al. Complementary mass spectral analysis of isomeric O-bearing organic compounds and fragmentation differences through analog techniques for spaceborne mass spectrometers. Planet. Sci. J. l 3, 254 (2022).

    Article 

    Google Scholar
     

  • McLafferty, F. W. & Turecek, F. Interpretation of Mass Spectra 4th edn (Univ. Science Books, 1993).

  • Dass, C. Fundamentals of Contemporary Mass Spectrometry 1st edn (John Wiley and Sons, 2007).

  • Liu, C. et al. The potential for organic synthesis in the ocean of Enceladus. Astrophys. J. 971, 51 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002).

    Article 

    Google Scholar
     

  • Trinks, H., Schröder, W. & Biebricher, C. K. Ice and the origin of life. Orig. Life Evol. Biosph. 35, 429–445 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Menor‐Salván, C., Ruiz‐Bermejo, M., Osuna‐Esteban, S., Muñoz‐Caro, G. & Veintemillas‐Verdaguer, S. Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario. Chem. Biodivers. 5, 2729–2739 (2008).

    Article 

    Google Scholar
     

  • Zhou, Y. et al. Selective exclusion of aromatic organic carbon during lake ice formation. Geophys. Res. Lett. 50, e2022GL101414 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).

    Article 
    ADS 

    Google Scholar
     

  • McCollom, T. M., Seewald, J. S. & Simoneit, B. R. T. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 65, 455–468 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Luther, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL094869 (2021).

    Article 
    ADS 

    Google Scholar
     

  • McCollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Konn, C. et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol. 258, 299–314 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Xu, H. et al. Organic compounds in geological hydrothermal systems: a critical review of molecular transformation and distribution. Earth Sci. Rev. 252, 104757 (2024).

    Article 

    Google Scholar
     

  • Xu, H. et al. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem. Geol. 608, 121045 (2022).

    Article 

    Google Scholar
     

  • Burchell, M. J. & Armes, S. P. Impact ionisation spectra from hypervelocity impacts using aliphatic poly(methyl methacrylate) microparticle projectiles. Rapid Commun. Mass Spectrom. 25, 543–550 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Mumma, M. J. & Charnley, S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Goesmann, F. et al. Organic compounds on comet 67P/Churyumov–Gerasimenko revealed by COSAC mass spectrometry. Science 349, aab0689 (2015).

    Article 

    Google Scholar
     

  • Schulte, M. D. & Shock, E. L. Aldehydes in hydrothermal solution: standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim. Cosmochim. Acta 57, 3835–3846 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Kim, S. M., Kim, Y. S., Kim, D. W., Rios, R. & Yang, J. W. Acetaldehyde: a small organic molecule with big impact on organocatalytic reactions. Chem. A Eur. J. 22, 2214–2234 (2016).

    Article 

    Google Scholar
     

  • Naraoka, H., Yamashita, Y., Yamaguchi, M. & Orthous-Daunay, F.-R. Molecular evolution of N-containing cyclic compounds in the parent body of the Murchison meteorite. Am. Chem. Soc. Earth Space Chem. 1, 540–550 (2017).

    ADS 

    Google Scholar
     

  • Diederich, P. et al. Formation, stabilization and fate of acetaldehyde and higher aldehydes in an autonomously changing prebiotic system emerging from acetylene. Commun. Chem. 6, 38 (2023).

    Article 

    Google Scholar
     

  • Pentsak, E. O., Murga, M. S. & Ananikov, V. P. Role of acetylene in the chemical evolution of carbon complexity. Am. Chem. Soc. Earth Space Chem. 8, 798–856 (2024).

    ADS 

    Google Scholar
     

  • Biver, N. & Bockelée-Morvan, D. Complex organic molecules in comets from remote-sensing observations at millimeter wavelengths. Am. Chem. Soc. Earth Space Chem. 3, 1550–1555 (2019).

    ADS 

    Google Scholar
     

  • Glavin, D. P. et al. in Primitive Meteorites and Asteroids: Physical, Chemical and Spectroscopic Observations Paving the Way to Exploration (ed. Abreu, N.) 205–271 (Elsevier, 2018).

  • Bradley, A. S., Fredricks, H., Hinrichs, K.-U. & Summons, R. E. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Org. Geochem. 40, 1169–1178 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rushdi, A. I. & Simoneit, B. R. T. Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions. Astrobiology 4, 211–224 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Fernández-García, C., Coggins, A. J. & Powner, M. W. A chemist’s perspective on the role of phosphorus at the origins of life. Life 7, 31 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Aspin, A., Smith, B., Burcar, E., Firestone, Z. & Yang, Z. Experimental and theoretical investigation of alkene transformations in oceanic hydrothermal fluids: a mechanistic study of styrene. Geophys. l Res. Lett. 50, e2023GL103738 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Mikula, R. et al. Impact ionization mass spectra of polypyrrole-coated anthracene microparticles: a useful mimic for cosmic polycyclic aromatic hydrocarbon dust. Am. Chem. Soc. Earth Space Chem. 8, 586–605 (2024).

    ADS 

    Google Scholar
     

  • Jaramillo-Botero, A. et al. Understanding hypervelocity sampling of biosignatures in space missions. Astrobiology 21, 421–442 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Schulze, J. A. et al. Effect of salts on the formation and hypervelocity-induced fragmentation of icy clusters with embedded amino acids. Am. Chem. Soc. Earth Space Chem. 7, 168–181 (2023).

    ADS 

    Google Scholar
     

  • Klenner, F. et al. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. Astrobiology 20, 179–189 2065 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hillier, J. K., Fiege, K., Trieloff, M. & Srama, R. Numerical modelling of mineral impact ionisation spectra. Planet. Space Sci. 89, 159–166 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Mocker, A. et al. On the application of a linear time-of-flight mass spectrometer for the investigation of hypervelocity impacts of micron and sub-micron sized dust particles. Planet. Space Sci. 89, 47–57 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kempf, S. et al. SUDA: a SUrface Dust Analyser for compositional mapping of the Galilean moon Europa. Space Sci. Rev. 221, 10 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Simolka, J. et al. The DESTINY(+) Dust Analyser—a dust telescope for analysing cosmic dust dynamics and composition. Philos. Trans. R. Soc. A 382, 20230199 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Klenner, F. et al. How to identify cell material in a single ice grain emitted from Enceladus or Europa. Sci. Adv. 10, eadl0849 (2024).

    Article 

    Google Scholar
     

  • Magee, B. A. & Waite, J. H. Neutral gas composition of Enceladus’ plume—model parameter insights from Cassini-INMS. In 48th Lunar and Planetary Science Conference, 2974 (Universities Space Research Association, 2017).

  • Postberg, F. et al. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 129–162 (Univ. of Arizona Press, 2018).

  • Sarma, N. S. et al. Hydrothermal alteration promotes humic acid formation in sediments: a case study of the Central Indian Ocean Basin. J. Geophys. Res. Oceans 123, 110–130 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sinha, S. & Raj, A. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study. Phys. Chem. Chem. Phys. 18, 8120–8131 (2016).

    Article 

    Google Scholar
     

  • Reizer, E., Viskolcz, B. & Fiser, B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: a mini-review. Chemosphere 291, 132793 (2022).

    Article 

    Google Scholar
     

  • Chen, P. et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein. Sci. Total Environ. 828, 154440 (2022).

    Article 

    Google Scholar
     

  • Denney, D. B. & Denney, D. Z. Studies of the mechanisms of the reactions of benzoyl peroxide with secondary amines and phenols. J. Am. Chem. Soc. 82, 1389–1393 (1960).

    Article 
    ADS 

    Google Scholar
     

  • El-Baz, H. A. et al. Enzymatic synthesis of glucose fatty acid esters using SCOs as acyl group-donors and their biological activities. Appl. Sci. 11, 2700 (2021).

    Article 

    Google Scholar
     

  • Habib, U., Riaz, M. & Hofmann, M. Unraveling the way acetaldehyde is formed from acetylene: a study based on DFT. Am. Chem. Soc. Omega 6, 6924–6933 (2021).


    Google Scholar
     

  • Cedillo, L. et al. Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans. eLife 12, e82210 (2023).

    Article 

    Google Scholar
     

  • Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. G. & Russell, M. J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl Acad. Sci. USA 116, 4828–4833 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Koga, T. & Naraoka, H. Synthesis of amino acids from aldehydes and ammonia: implications for organic reactions in carbonaceous chondrite parent bodies. Am. Chem. Soc. Earth Space Chem. 6, 1311–1320 (2022).

    ADS 

    Google Scholar
     

  • Miller, S. L. & Van Trump, J. E. The Strecker synthesis in the primitive ocean. In Origin of Life (ed. Wolman, Y.) 135–141 (Springer Netherlands, 1981).

  • Pizzarello, S. Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry: catalytic syntheses of amino acids. Meteorit. Planet. Sci. 47, 1291–1296 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Schwander, L. et al. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front. Microbiol. 14, 1257597 (2023).

    Article 

    Google Scholar
     

  • Al-Faze, R., Kozhevnikova, E. F. & Kozhevnikov, I. V. Diethyl ether conversion to ethene and ethanol catalyzed by heteropoly acids. Am. Chem. Soc. Omega 6, 9310–9318 (2021).


    Google Scholar
     

  • Groeneveld, G., Kuijer, S. & De Puit, M. Preparation of cyanoacrylate derivatives and comparison of dual action cyanoacrylate formulations. Sci. Justice 54, 42–48 (2014).

    Article 

    Google Scholar
     

  • Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article 

    Google Scholar
     

  • Jeilani, Y. A., Fearce, C. & Nguyen, M. T. Acetylene as an essential building block for prebiotic formation of pyrimidine bases on Titan. Phys. Chem. Chem. Phys. 17, 24294–24303 (2015).

    Article 

    Google Scholar
     

  • Perrero, J. et al. Non-energetic formation of ethanol via CCH reaction with interstellar H2O ices. A computational chemistry study. Am. Chem. Soc. Earth Space Chem. 6, 496–511 (2022).

    ADS 

    Google Scholar
     

  • Cairns, T. L., Sauer, J. C. & Wilkinson, W. K. Synthesis of pyrimidines and pyridines from acetylene and nitriles. J. Am. Chem. Soc. 74, 3989–3992 (1952).

    Article 
    ADS 

    Google Scholar
     

  • Ma, Y. et al. Direct conversion of methane to ethylene and acetylene over an iron-based metal–organic framework. J. Am. Chem. Soc. 145, 20792–20800 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (2002).

    Article 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *