Bryophytes hold a larger gene family space than vascular plants

  • Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Bowman, J. L. The origin of a land flora. Nat. Plants 8, 1352–1369 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Graham, L. E., Cook, M. E. & Busse, J. S. The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc. Natl Acad. Sci. USA 97, 4535–4540 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puttick, M. N. et al. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr. Biol. 28, 733–745 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).

    Article 

    Google Scholar
     

  • Su, D. et al. Large-scale phylogenomic analyses reveal the monophyly of bryophytes and neoproterozoic origin of land plants. Mol. Biol. Evol. 38, 3332–3344 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, B. J. et al. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nat. Ecol. Evol. 6, 1634–1643 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, B. J., Harrison, C. J., Hetherington, A. M. & Williams, T. A. Phylogenomic evidence for the monophyly of bryophytes and the reductive evolution of stomata. Curr. Biol. 30, 2001–2012 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sousa, F., Foster, P. G., Donoghue, P. C. J., Schneider, H. & Cox, C. J. Nuclear protein phylogenies support the monophyly of the three bryophyte groups (Bryophyta Schimp.). New Phytol. 222, 565–575 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Christenhusz, M. & Byng, J. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).

    Article 

    Google Scholar
     

  • Degola, F., Sanità di Toppi, L. & Petraglia, A. Bryophytes: how to conquer an alien planet and live happily (ever after). J. Exp. Bot. 73, 4267–4272 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ligrone, R., Duckett, J. G. & Renzaglia, K. S. Major transitions in the evolution of early land plants: a bryological perspective. Ann. Bot. 109, 851–871 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, J. & Renzaglia, K. Phylogeny and diversification of bryophytes. Am. J. Bot. 91, 1557–1581 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Glime, J. M. Primitive or advanced? Bryological 55, 5–7 (1990).


    Google Scholar
     

  • Bowman, J. L. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171, 287–304 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rensing, S. A. et al. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64–69 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. The hornwort genome and early land plant evolution. Nat. Plants 6, 107–118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, F. W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, R. et al. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 186, 3558–3576 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marks, R. A., Hotaling, S., Frandsen, P. B. & VanBuren, R. Representation and participation across 20 years of plant genome sequencing. Nat. Plants 7, 1571–1578 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szövényi, P., Gunadi, A. & Li, F. W. Charting the genomic landscape of seed-free plants. Nat. Plants 7, 554–565 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Renzaglia, K. S., Villarreal Aguilar, J. C. & Garbary, D. J. Morphology supports ­the setaphyte hypothesis: mosses plus liverworts form a natural group. Bryophyt. Divers. Evol. 40, 11–17 (2018).

    Article 

    Google Scholar
     

  • Frangedakis, E. et al. The hornworts: morphology, evolution and development. New Phytol. 229, 735–754 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nat. Commun. 10, 1485 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowles, A. M. C., Bechtold, U. & Paps, J. The origin of land plants is rooted in two bursts of genomic novelty. Curr. Biol. 30, 530–536 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McElwain, J. C. & Punyasena, S. W. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22, 548–557 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Rapid evolution of protein diversity by de novo origination in Oryza. Nat. Ecol. Evol. 3, 679–690 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, X. et al. Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol. Plant 8, 935–945 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, D. D. et al. ‘Out of pollen’ hypothesis for origin of new genes in flowering plants: study from Arabidopsis thaliana. Genome Biol. Evol. 6, 2822–2829 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, G. et al. New genes interacted with recent whole-genome duplicates in the fast stem growth of bamboos. Mol. Biol. Evol. 38, 5752–5768 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Long, M., VanKuren, N. W., Chen, S. & Vibranovski, M. D. New gene evolution: little did we know. Annu. Rev. Genet. 47, 307–333 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat. Biotechnol. 30, 105–111 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villarreal, A. J., Crandall-Stotler, B. J., Hart, M. L., Long, D. G. & Forrest, L. L. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate. New Phytol. 209, 1734–1746 (2016).

    Article 

    Google Scholar
     

  • Linde, A. M., Eklund, D. M., Cronberg, N., Bowman, J. L. & Lagercrantz, U. Rates and patterns of molecular evolution in bryophyte genomes, with focus on complex thalloid liverworts, Marchantiopsida. Mol. Phylogenet. Evol. 165, 107295 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carvunis, A. R. et al. Proto-genes and de novo gene birth. Nature 487, 370–374 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, S., Chen, J., Arsala, D., Emerson, J. J. & Long, M. Functional innovation through new genes as a general evolutionary process. Nat. Genet. 57, 295–309 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vuruputoor, V. S. et al. Crossroads of assembling a moss genome: navigating contaminants and horizontal gene transfer in the moss Physcomitrellopsis africana. G3 (Bethesda) 14, jkae104 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolukisaoglu, Ü. D-amino acids in plants: sources, metabolism, and functions. Int. J. Mol. Sci. 21, 5421 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yow, G.-Y., Uo, T., Yoshimura, T. & Esaki, N. Physiological role of d-amino acid-N-acetyltransferase of Saccharomyces cerevisiae: detoxification of d-amino acids. Arch. Microbiol. 185, 39–46 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ludin, K. M., Hilti, N. & Schweingruber, M. E. Schizosaccharomyces pombe rds1, an adenine-repressible gene regulated by glucose, ammonium, phosphate, carbon dioxide and temperature. Mol. Gen. Genet 248, 439–445 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sudmoon, R., Sattayasai, N., Bunyatratchata, W., Chaveerach, A. & Nuchadomrong, S. Thermostable mannose-binding lectin from Dendrobium findleyanum with activities dependent on sulfhydryl content. Acta Biochim. Biophys. Sin. (Shanghai) 40, 811–818 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Sattayasai, N. et al. Dendrobium findleyanum agglutinin: production, localization, anti-fungal activity and gene characterization. Plant Cell Rep. 28, 1243–1252 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holm, D. K. et al. Molecular and chemical characterization of the biosynthesis of the 6-MSA-derived meroterpenoid yanuthone D in Aspergillus niger. Chem. Biol. 21, 519–529 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ayers, S. et al. Noreupenifeldin, a tropolone from an unidentified ascomycete. J. Nat. Prod. 71, 457–459 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romani, F. et al. Oil body formation in Marchantia polymorpha is controlled by MpC1HDZ and serves as a defense against arthropod herbivores. Curr. Biol. 30, 2815–2828 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kanazawa, T. et al. The liverwort oil body is formed by redirection of the secretory pathway. Nat. Commun. 11, 6152 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. Major episodes of horizontal gene transfer drove the evolution of land plants. Mol. Plant 15, 857–871 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, K., Guo, Y. & Head, G. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to bt insecticidal protein during 2001–2004 in China. J. Econ. Entomol. 99, 893–898 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gage, M. J., Bruenn, J., Fischer, M., Sanders, D. & Smith, T. J. KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake. Mol. Microbiol. 41, 775–785 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, Y. et al. Horizontally acquired fungal killer protein genes affect cell development in mosses. Plant J. 113, 665–676 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, G. et al. Are fungi-derived genomic regions related to antagonism towards fungi in mosses? New Phytol. 228, 1169–1175 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Qiao, X. et al. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biol. 20, 38 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLysaght, A. & Hurst, L. D. Open questions in the study of de novo genes: what, how and why. Nat. Rev. Genet. 17, 567–578 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondrashov, A. S. & Crow, J. F. Haploidy or diploidy: which is better? Nature 351, 314–315 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, J. Horizontal gene transfer in eukaryotes: the weak-link model. Bioessays 35, 868–875 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, X. M. et al. Orphan gene PpARDT positively involved in drought tolerance potentially by enhancing ABA response in Physcomitrium (Physcomitrella) patens. Plant Sci. 319, 111222 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. The Antarctic moss Pohlia nutans genome provides insights into the evolution of bryophytes and the adaptation to extreme terrestrial habitats. Front. Plant Sci. 13, 920138 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. et al. Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Crit. Rev. Plant Sci. 37, 210–231 (2018).

    Article 

    Google Scholar
     

  • Jia, Q., Kollner, T. G., Gershenzon, J. & Chen, F. MTPSLs: new terpene synthases in nonseed plants. Trends Plant Sci. 23, 121–128 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, C. & Lou, H. Secondary metabolites in bryophytes: an ecological aspect. Chem. Biodivers. 6, 303–312 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romani, F. et al. Liverwort oil bodies: diversity, biochemistry, and molecular cell biology of the earliest secretory structure of land plants. J. Exp. Bot. 73, 4427–4439 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asakawa, Y., Ludwiczuk, A. & Nagashima, F. Chemical constituents of bryophytes. Bio- and chemical diversity, biological activity, and chemosystematics. Prog. Chem. Org. Nat. Prod. 95, 1–796 (2013).

    PubMed 

    Google Scholar
     

  • Söderström, L. et al. World checklist of hornworts and liverworts. PhytoKeys 27, 1–828 (2016).

    Article 

    Google Scholar
     

  • Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J. & Ecker, J. R. MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nat. Protoc. 10, 475–483 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome project. Preprint at arXiv https://doi.org/10.48550/arXiv.1308.2012 (2013).

  • Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaser, R., Sovic, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 727–736 (2017).

    Article 

    Google Scholar
     

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurka, J. et al. Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McCarthy, E. M. & McDonald, J. F. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19, 362–367 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamisugi, Y. et al. A sequence-anchored genetic linkage map for the moss, Physcomitrella patens. Plant J. 56, 855–866 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M. & Borodovsky, M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 3, lqaa108 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, H. et al. Synteny and collinearity in plant genomes. Science 320, 486–488 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics 13, 555–556 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Sensalari, C., Maere, S. & Lohaus, R. ksrates: positioning whole-genome duplications relative to speciation events in KS distributions. Bioinformatics 38, 530–532 (2021).

    Article 

    Google Scholar
     

  • Proost, S. et al. i-ADHoRe 3.0-fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, e11 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laetsch, D. & Blaxter, M. KinFin: software for taxon-aware analysis of clustered protein sequences. G3 (Bethesda) 7, 3349–3357 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 33, 511–518 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirarab, S. et al. Astral: genome-scale coalescent-based species tree estimation. Bioinformatics 30, i541–i548 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S., Moore, M., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. A., Brown, J. W. & Walker, J. F. So many genes, so little time: a practical approach to divergence-time estimation in the genomic era. PLoS ONE 13, e0197433 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T. & Drummond, A. J. Beast 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miklós, C. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).

    Article 

    Google Scholar
     

  • Yi, Z. et al. Itak: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol. Plant 9, 1667–1670 (2016).

    Article 

    Google Scholar
     

  • Kong, L. et al. Origins and evolution of cuticle biosynthetic machinery in land plants. Plant Physiol. 184, 1998–2010 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Whitewoods, C. D. et al. CLAVATA was a genetic novelty for the morphological innovation of 3D growth in land plants. Curr. Biol. 28, 2365–2376 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radhakrishnan, G. V. et al. An ancestral signalling pathway is conserved in intracellular symbioses-forming plant lineages. Nat. Plants 6, 280–289 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, H., Kong, F. & Zhou, C. From genes to networks: the genetic control of leaf development. J. Integr. Plant Biol. 63, 1181–1196 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Genome analysis of the ancient tracheophyte Selaginella tamariscina reveals evolutionary features relevant to the acquisition of desiccation tolerance. Mol. Plant 11, 983–994 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant. Biol. 62, 567–590 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fangel, J. U. et al. Cell wall evolution and diversity. Front. Plant Sci. 3, 152 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, S. et al. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179, 1057–1067 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, K. et al. The regulation of sporopollenin biosynthesis genes for rapid pollen wall formation. Plant Physiol. 178, 283–294 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clayton, W. A. et al. UVR8-mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort Marchantia polymorpha and flowering plants. Plant J. 96, 503–517 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, Q. et al. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. Proc. Natl Acad. Sci. USA 113, 12328–12333 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quang, M. B. et al. IQTREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 

    Google Scholar
     

  • Jin, M. et al. Two ABC transporters are differentially involved in the toxicity of two Bacillus thuringiensis Cry1 toxins to the invasive crop-pest Spodoptera frugiperda (J. E. Smith). Pest Manag. Sci. 77, 1492–1501 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, S. Genome annotation files, orthogroup information, phylogenetic trees and alignments used for bryophyte genome project. figshare https://doi.org/10.6084/m9.figshare.23528667.v6 (2023).


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *