A prudent planetary limit for geologic carbon storage

  • Riahi, K. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 3 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926.005.

  • Clarke, L. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) Ch. 6 (Cambridge Univ. Press, 2022); https://doi.org/10.1017/9781009157926.008.

  • Kearns, J. et al. Developing a consistent database for regional geologic CO2 storage capacity worldwide. Energy Procedia 114, 4697–4709 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Baines, S. et al. CO2 Storage Resource Catalogue—Cycle 3 Report (Oil and Gas Climate Initiative, 2022).

  • Damon, et al. An integrated approach to quantifying uncertainties in the remaining carbon budget. Commun. Earth Environ. 2, 7 (2021).

    Article 

    Google Scholar
     

  • Palazzo, et al. The Zero Emissions Commitment and climate stabilization. Front. Sci. 1, 1170744 (2023).

    Article 

    Google Scholar
     

  • Arias, P. A. et al. Technical Summary. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Metz, B., Davidson, O., de Coninck, H. & Loos, M. IPCC Special Report on Carbon Dioxide Capture and Storage (IPCC, 2005).

  • Matters Relating to the Global Stocktake under the Paris Agreement (UNFCCC, 2023).

  • The Global Status of CCS: 2024 (Global CCS Institute, 2024).

  • Gasos, A., Pini, R., Becattini, V., & Mazzotti, M. Enhanced oil recovery using carbon dioxide directly captured from air does not enable carbon-neutral oil. Preprint at EarthArXiv https://doi.org/10.31223/X55X4S (2025).

  • Selosse, S. & Ricci, O. Carbon capture and storage: lessons from a storage potential and localization analysis. Appl. Energy 188, 32–44 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Steyn, M., Oglesby, J., Turan, G., Zapantis, A. & Gebremedhin, R. Global Status of CCS 2022 (Global CCS Institute, 2022).

  • Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).

    Article 

    Google Scholar
     

  • Schleussner, Carl-Friedrich, et al. Overconfidence in climate overshoot. Nature 634, 366–373 (2024).

  • Lane, J., Greig, C. & Garnett, A. Uncertain storage prospects create a conundrum for carbon capture and storage ambitions. Nat. Clim. Change 11, 925–936 (2021).

    Article 

    Google Scholar
     

  • Grant, N., Hawkes, A., Mittal, S. & Gambhir, A. The policy implications of an uncertain carbon dioxide removal potential. Joule 5, 2593–2605 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hepple, R. P. & Benson, S. M. Geologic storage of carbon dioxide as a climate change mitigation strategy: performance requirements and the implications of surface seepage. Environ. Geol. 47, 576–585 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Krevor, S. et al. Subsurface carbon dioxide and hydrogen storage for a sustainable energy future. Nat. Rev. Earth Environ. 4, 102–118 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Benson, S. et al. in IPCC Special Report on Carbon Dioxide Capture and Storage (eds Metz, B. et al.) Ch. 5 (Cambridge Univ. Press, 2005).

  • Kazlou, T., Cherp, A. & Jewell, J. Feasible deployment of carbon capture and storage and the requirements of climate targets. Nat. Clim. Chang. 14, 1047–1055 (2024).

  • Romeiro, V. & Parente, V. Carbon capture and storage and the UNFCCC: recommendations to address trans-boundary issues. Low Carbon Econ. 03, 130–136 (2012).

    Article 

    Google Scholar
     

  • Stuart-Smith, R. F., Rajamani, L., Rogelj, J. & Wetzer, T. Legal limits to the use of CO2 removal. Science 382, 772–774 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wei, Y.-M. et al. A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nat. Clim. Change 11, 112–118 (2021).

    Article 

    Google Scholar
     

  • Zhang, Y., Jackson, C. & Krevor, S. The feasibility of reaching gigatonne scale CO2 storage by mid-century. Nat. Commun. 15, 6913 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodman, A. et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. Int. J. Greenh. Gas Control 5, 952–965 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Shindell, D. & Rogelj, J. Preserving carbon dioxide removal to serve critical needs. Nat. Clim. Change https://doi.org/10.1038/s41558-025-02251-y (2025).

  • Bachu, S. Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers. Manag. 41, 953–970 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Kaldi, J. G. & Gibson-Poole, C. M. (eds.). Storage capacity estimation, site selection and characterisation for CO2 storage projects. Report No. RPT08-1001 (CO2CRC, 2008).

  • Raza, A. et al. A screening criterion for selection of suitable CO2 storage sites. J. Nat. Gas Sci. Eng. 28, 317–327 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nicol, A., Carne, R., Gerstenberger, M. & Christophersen, A. Induced seismicity and its implications for CO2 storage risk. Energy Procedia 4, 3699–3706 (2011).

    Article 

    Google Scholar
     

  • The severity of an earthquake. USGS https://pubs.usgs.gov/gip/earthq4/severitygip.html (1989).

  • Mehlhorn, J., Byrne, J. M., Kappler, A. & Planer-Friedrich, B. Time and temperature dependency of carbon dioxide triggered metal (loid) mobilization in soil. Appl. Geochem. 74, 122–137 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Knauss, K. G., Johnson, J. W. & Steefel, C. I. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chem. Geol. 217, 339–350 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Pianta, S., Rinscheid, A. & Weber, E. U. Carbon capture and storage in the United States: perceptions, preferences, and lessons for policy. Energy Policy 151, 112149 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arning, K. et al. Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany. Energy Policy 125, 235–249 (2019).

    Article 

    Google Scholar
     

  • Request for an Advisory Opinion Submitted by the Commission of Small Island States on Climate Change and International Law (International Tribunal for the Law of the Sea, 2024).

  • Garrett, J. & McCoy, S. Carbon capture and storage and the London Protocol: recent efforts to enable transboundary CO2 transfer. Energy Procedia 37, 7747–7755 (2013).

    Article 

    Google Scholar
     

  • Status of IMO Treaties (International Maritime Organization, 2024).

  • Larson, E., Li, Z. & Williams, R. in Global Energy Assessment: Toward A Sustainable Future Ch. 12 (Cambridge Univ. Press, 2012).

  • Muratori, M. et al. EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic Change 163, 1621–1637 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bui, M. et al. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci. 11, 1062–1176 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Fuhrman, J. et al. The role of direct air capture and negative emissions technologies in the shared socioeconomic pathways towards +1.5 °C and +2 °C futures. Environ. Res. Lett. 16, 114012 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gidden, M. J. et al. Fairness and feasibility in deep mitigation pathways with novel carbon dioxide removal considering institutional capacity to mitigate. Environ. Res. Lett. 18, 074006 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Gambhir, A. & Tavoni, M. Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation. One Earth 1, 405–409 (2019).

    Article 

    Google Scholar
     

  • Grant, N., Gambhir, A., Mittal, S., Greig, C. & Köberle, A. C. Enhancing the realism of decarbonisation scenarios with practicable regional constraints on CO2 storage capacity. Int. J. Greenh. Gas Control 120, 103766 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Smith, S. M. et al. The State of Carbon Dioxide Removal 1st edn (The State of Carbon Dioxide Removal, 2023); https://www.stateofcdr.org.

  • Crude Oil Production (Indicator) (OECD, 2024); https://doi.org/10.1787/4747b431-en.

  • den Elzen, M. G. J. et al. Updated nationally determined contributions collectively raise ambition levels but need strengthening further to keep Paris goals within reach. Mitig. Adapt. Strateg. Glob. Change 27, 33 (2022).

    Article 

    Google Scholar
     

  • Höhne, N. et al. Wave of net zero emission targets opens window to meeting the Paris Agreement. Nat. Clim. Change 11, 820–822 (2021).

    Article 

    Google Scholar
     

  • Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Andreoni, P., Emmerling, J. & Tavoni, M. Inequality repercussions of financing negative emissions. Nat. Clim. Change 14, 48–54 (2024).

    Article 

    Google Scholar
     

  • Nemet, G. F. et al. Near-term deployment of novel carbon removal to facilitate longer-term deployment. Joule 7, 2653–2659 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Khandoozi, S., Hazlett, R. & Fustic, M. A critical review of CO2 mineral trapping in sedimentary reservoirs—from theory to application: pertinent parameters, acceleration methods and evaluation workflow. Earth Sci. Rev. 244, 104515 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Azzolina, N. A. et al. CO2 storage associated with CO2 enhanced oil recovery: a statistical analysis of historical operations. Int. J. Greenh. Gas Control 37, 384–397 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clark, D. E. et al. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochim. Cosmochim. Acta 279, 45–66 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McGrail, B., Spane, F., Sullivan, E., Bacon, D. & Hund, G. The Wallula basalt sequestration pilot project. Energy Procedia 4, 5653–5660 (2011).

    Article 

    Google Scholar
     

  • Cao, X., Li, Q., Xu, L. & Tan, Y. A review of in situ carbon mineralization in basalt. J. Rock Mech. Geotech. Eng. https://doi.org/10.1016/j.jrmge.2023.11.010 (2023).

  • Mace, M. J., Fyson, C. L., Schaeffer, M. & Hare, W. L. Large-scale carbon dioxide removal to meet the 1.5 °C limit: key governance gaps, challenges and priority responses. Glob. Policy 12, 67–81 (2021).

    Article 

    Google Scholar
     

  • Medvecky, F., Lacey, J. & Ashworth, P. Examining the role of carbon capture and storage through an ethical lens. Sci. Eng. Ethics 20, 1111–1128 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C.-F. Fair-share carbon dioxide removal increases major emitter responsibility. Nat. Clim. Change 10, 836–841 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ringrose, P. S. & Meckel, T. A. Maturing global CO2 storage resources on offshore continental margins to achieve 2DS emissions reductions. Sci. Rep. 9, 17944 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zickfeld, K., Azevedo, D., Mathesius, S. & Matthews, H. D. Asymmetry in the climate–carbon cycle response to positive and negative CO2 emissions. Nat. Clim. Change 11, 613–617 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gütschow, J. et al. The PRIMAP-hist national historical emissions time series. Earth Syst. Sci. Data 8, 571–603 (2016).

    Article 

    Google Scholar
     

  • Furre, A.-K., Eiken, O., Alnes, H., Vevatne, J. N. & Kiær, A. F. 20 years of monitoring CO2-injection at Sleipner. Energy Procedia 114, 3916–3926 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Benedictus, T. et al. Long Term Integrity of CO2 Storage—Well Abandonment (IEAGHG, 2009).

  • Evenick, J. C. Glimpses into Earth’s history using a revised global sedimentary basin map. Earth Sci. Rev. 215, 103564 (2021).

    Article 

    Google Scholar
     

  • Bradshaw, J. et al. The potential for geological sequestration of CO2 in Australia: preliminary findings and implications for new gas field development. APPEA J. 42, 25–46 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Development of Storage Coefficients for CO2 Storage in Deep Saline Formations (IEAGHG, 2009).

  • Laske, G., Masters, G., Ma, Z. & Pasyanos, M. Update on CRUST1. 0—a 1-degree global model of Earth’s crust. Geophys. Res. Abstr. 15, 2658 (2013).

  • Szulczewski, M. L., MacMinn, C. W., Herzog, H. J. & Juanes, R. Lifetime of carbon capture and storage as a climate-change mitigation technology. Proc. Natl Acad. Sci. USA 109, 5185–5189 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2024).

  • Maritime Boundaries Geodatabase (Flanders Marine Institute, 2023); https://doi.org/10.14284/628.

  • Michie, E. A. H. & Braathen, A. How displacement analysis may aid fault risking strategies for CO2 storage. Basin Res. 36, e12807 (2024).

    Article 

    Google Scholar
     

  • Johnson, K. et al. Global seismic hazard map. Zenodo https://doi.org/10.5281/zenodo.8409647 (2023).

  • Wald, D. J., Quitoriano, V., Heaton, T. H. & Kanamori, H. Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthq. Spectra 15, 557–564 (1999).

    Article 

    Google Scholar
     

  • Damen, K., Faaij, A. & Turkenburg, W. Health, safety and environmental risks of underground CO2 storage—overview of mechanisms and current knowledge. Climatic Change 74, 289–318 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Gao, J. & O’Neill, B. C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 11, 2302 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Neill, B. C. et al. The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2015.01.004 (2015).

  • Bruhn, C. H. et al. Campos and Santos basins: 40 years of reservoir characterization and management of shallow-to ultra-deep water, post-and pre-salt reservoirs-Historical overview and future challenges. In Offshore Technology Conference Brasil D011S006R001 (OTC, 2017).

  • Beyer, J., Trannum, H. C., Bakke, T., Hodson, P. V. & Collier, T. K. Environmental effects of the Deepwater Horizon oil spill: a review. Mar. Pollut. Bull. 110, 28–51 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Global Oil and Gas Extraction Tracker (Global Energy Monitor, 2025).

  • Omara, M. et al. Developing a spatially explicit global oil and gas infrastructure database for characterizing methane emission sources at high resolution. Earth Syst. Sci. Data 15, 3761–3790 (2023).

    Article 

    Google Scholar
     

  • Sabbatino, M. et al. Global Oil & Gas Features Database (National Energy Technology Laboratory, 2017); https://doi.org/10.18141/1427300.

  • Global Oil and Gas Extraction Tracker (Global Energy Monitor, 2024).

  • Zhang, G. et al. Giant discoveries of oil and gas fields in global deepwaters in the past 40 years and the prospect of exploration. J. Nat. Gas Geosci. 4, 1–28 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Project, T. T., De Reuck, K., Angus, S. & Armstrong, B. International Thermodynamic Tables of the Fluid State: Carbon Dioxide (Pergamon Press, 1976).

  • Hasan, M. M., Alam, M. W., Jian, H. & Chowdhury, K. M. A. Protracted maritime boundary disputes and maritime laws. J. Int. Marit. Saf. Environ. Aff. Shipp. 2, 89–96 (2019).


    Google Scholar
     

  • Byers, E. et al. AR6 scenarios database. Zenodo https://doi.org/10.5281/zenodo.5886912 (2022).

  • Huppmann, D. et al. pyam: analysis and visualisation of integrated assessment and macro-energy scenarios. Open Res. Eur. 1, 74 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gidden, M. & Joshi, S. Supplemental Data for Gidden et al 2025: a prudent planetary limit for geologic carbon storage. Zenodo https://doi.org/10.5281/zenodo.15657542 (2025).


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *