Wednesday , 10 September 2025

Future ocean warming may cause large reductions in Prochlorococcus biomass and productivity

  • Cheng, L. et al. New record ocean temperatures and related climate indicators in 2023. Adv. Atmos. Sci. https://doi.org/10.1007/s00376-024-3378-5 (2024).

    Article 

    Google Scholar
     

  • Wang, G., Xie, S.-P., Huang, R. X. & Chen, C. Robust warming pattern of global subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).

    Article 

    Google Scholar
     

  • Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376, 524–526 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Plattner, G.-K., Joos, F., Stocker, T. F. & Marchal, O. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B 53, 564–592 (2001).


    Google Scholar
     

  • Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).

    Article 

    Google Scholar
     

  • Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, T. L. Mechanisms and pathways of small-phytoplankton export from the surface ocean. Ann. Rev. Mar. Sci. 11, 57–74 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martiny, A. C. et al. Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnol. Oceanogr. 67, S378–S389 (2022).

    Article 

    Google Scholar
     

  • Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laws, E. A. Evaluation of in situ phytoplankton growth rates: a synthesis of data from varied approaches. Annu. Rev. Mar. Sci. 5, 247–268 (2013).

    Article 

    Google Scholar
     

  • Swalwell, J. E., Ribalet, F. & Armbrust, E. V. Seaflow: a novel underway flow-cytometer for continuous observations of phytoplankton in the ocean. Limnol. Oceanogr. Methods 9, 466–477 (2011).

    Article 

    Google Scholar
     

  • Ribalet, F. et al. SeaFlow data v1, high-resolution abundance, size and biomass of small phytoplankton in the North Pacific. Sci. Data 6, 277 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mattern, J. P. et al. A Bayesian approach to modeling phytoplankton population dynamics from size distribution time series. PLoS Comput. Biol. 18, e1009733 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter-Cevera, K. R. et al. Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter. Proc. Natl Acad. Sci. USA 111, 9852–9857 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl Acad. Sci. USA 112, 8008–8012 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. Proc. Natl Acad. Sci. USA 117, 12215–12221 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grone, J. et al. A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian growth. Environ. Microbiol. https://doi.org/10.1111/1462-2920.16605 (2024).

  • Agawin, N. S. R. & Agustí, S. Prochlorococcus and Synechococcus cells in the central Atlantic Ocean: distribution, growth and mortality (grazing) rates. Vie Milieu 55, 165–175 (2005).


    Google Scholar
     

  • Shalapyonok, A., Olson, R. J. & Shalapyonok, L. S. Ultradian growth in Prochlorococcus spp. Appl. Environ. Microbiol. 64, 1066–1069 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Worden, A. & Binder, B. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).

    Article 

    Google Scholar
     

  • Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, S. et al. Variations in physiology and genomic function of Prochlorococcus across the eastern Indian Ocean. J. Geophys. Res. Oceans 128, e2023JC019898 (2023).

    Article 

    Google Scholar
     

  • Kuipers, B. R. & Witte, H. J. Prochlorophytes as secondary prey for heterotrophic nanoflagellates in the deep chlorophyll maximum layer of the (sub)tropical North Atlantic. Mar. Ecol. Prog. Ser. 204, 53–63 (2000).

    Article 

    Google Scholar
     

  • Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).

    Article 

    Google Scholar
     

  • Landry, M. R. et al. Microbial community biomass, production and grazing along 110° E in the eastern Indian Ocean. Deep Sea Res. 202, 105134 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Chen, B. et al. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnol. Oceanogr. 54, 1084–1097 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M., Liu, H. & Li, H. Effect of mesozooplankton feeding selectivity on the dynamics of algae in presence of intermediate grazers—a laboratory simulation. Mar. Ecol. Prog. Ser. 486, 47–58 (2013).

    Article 

    Google Scholar
     

  • Brown, S. L. et al. Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res. 46, 1745–1768 (1999).

    Article 

    Google Scholar
     

  • Reckermann, M. & Veldhuis, M. Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquat. Microb. Ecol. 12, 263–273 (1997).

    Article 

    Google Scholar
     

  • Casey, J. R., Lomas, M. W., Mandecki, J. & Walker, D. E. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 34, L10604 (2007).

    Article 

    Google Scholar
     

  • Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biller, S. J. et al. Environmental and taxonomic drivers of bacterial extracellular vesicle production in marine ecosystems. Appl. Environ. Microbiol. 89, e00594-23 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zinser, E. R. et al. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol. Oceanogr. 52, 2205–2220 (2007).

    Article 

    Google Scholar
     

  • Smith, A. N. et al. Comparing Prochlorococcus temperature niches in the lab and across ocean basins. Limnol. Oceanogr. 66, 2632–2647 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).

    Article 

    Google Scholar
     

  • Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss, J. et al. The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients. Environ. Microbiol. 25, 2118–2141 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Follows, M. J. & Dutkiewicz, S. Modeling diverse communities of marine microbes. Annu. Rev. Mar. Sci. 3, 427–451 (2011).

    Article 

    Google Scholar
     

  • Anderson, S. I. et al. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean. Glob. Change Biol. 30, e17093 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, e2111300118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barton, S. et al. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. Glob. Change Biol. 29, 5261–5275 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).

    Article 

    Google Scholar
     

  • Labban, A., Shibl, A. A., Calleja, M. L., Hong, P.-Y. & Morán, X. A. G. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environ. Microbiol. 25, 1007–1021 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alonso-Sáez, L. et al. Transcriptional mechanisms of thermal acclimation in Prochlorococcus. mBio 14, e03425-22 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiksnis, C. et al. Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation. Front. Microbiol. 15, 1323499 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dedman, C. J., Barton, S., Fournier, M. & Rickaby, R. E. M. Shotgun proteomics reveals temperature-dependent regulation of major nutrient metabolism in coastal Synechococcus sp. WH5701. Algal Res. 75, 103279 (2023).

    Article 

    Google Scholar
     

  • Britten, G. L. & Sibert, E. C. Enhanced fish production during a period of extreme global warmth. Nat. Commun. 11, 5636 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Change Biol. 27, 1196–1213 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Archibald, K., Dutkiewicz, S., Laufkötter, C. & Moeller, H. V. Thermal responses in global marine planktonic food webs are mediated by temperature effects on metabolism. J. Geophys. Res. https://doi.org/10.1029/2022JC018932 (2022).

  • Atkinson, A. et al. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines. Nat. Commun. 15, 381 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Becker, J. W., Hogle, S. L., Rosendo, K. & Chisholm, S. W. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 13, 1506–1519 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashkezari, M. D. et al. Simons Collaborative Marine Atlas Project (Simons CMAP): an open-source portal to share, visualize, and analyze ocean data. Limnol. Oceanogr. Methods 19, 488–496 (2021).

    Article 

    Google Scholar
     

  • Sosik, H. M., Olson, R. J., Neubert, M. G., Shalapyonok, A. & Solow, A. R. Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer. Limnol. Oceanogr. 48, 1756–1765 (2003).

    Article 

    Google Scholar
     

  • Hamilton, M. et al. Dynamics of Teleaulax-like cryptophytes during the decline of a red water bloom in the Columbia River Estuary. J. Plankton Res. 39, 589–599 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article 

    Google Scholar
     

  • Jones, C., Clayton, S., Ribalet, F., Armbrust, E. V. & Harchaoui, Z. A kernel-based change detection method to map shifts in phytoplankton communities measured by flow cytometry. Methods Ecol. Evol. 12, 1687–1698 (2021).

    Article 

    Google Scholar
     

  • Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Global Ocean Biogeochemistry Analysis and Forecast. E.U. Copernicus Marine Service Information (CMEMS) https://doi.org/10.48670/moi-00015 (2021).

  • Grimaud, G. M., Mairet, F., Sciandra, A. & Bernard, O. Modeling the temperature effect on the specific growth rate of phytoplankton: a review. Rev. Environ. Sci. Biotechnol. 16, 625–645 (2017).

    Article 

    Google Scholar
     

  • Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).

    Article 

    Google Scholar
     

  • Mullen, K. M., Ardia, D., Gil, D. L., Windover, D. & Cline, J. DEoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2011).

    Article 

    Google Scholar
     

  • Dutkiewicz, S. et al. Multiple biotic interactions establish phytoplankton community structure across environmental gradients. Limnol. Oceanogr. 69, 1086–1100 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).

    Article 

    Google Scholar
     

  • Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).

    Article 

    Google Scholar
     

  • Dutkiewicz, S. et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences 12, 4447–4481 (2015).

    Article 

    Google Scholar
     

  • Sokolov, A. P. et al. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation (2005); https://dspace.mit.edu/handle/1721.1/29789

  • Monier, E., Scott, J. R., Sokolov, A. P., Forest, C. E. & Schlosser, C. A. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0). Geosci. Model Dev. 6, 2063–2085 (2013).

    Article 

    Google Scholar
     

  • Monier, E. et al. Toward a consistent modeling framework to assess multi-sectoral climate impacts. Nat. Commun. 9, 660 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102, 5753–5766 (1997).

    Article 

    Google Scholar
     

  • Sokolov, A. et al. Description and evaluation of the MIT Earth System Model (MESM). J. Adv. Model. Earth Syst. 10, 1759–1789 (2018).

    Article 

    Google Scholar
     

  • Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ribalet, F., Dutkiewicz, S., Monier, E. & Armbrust, E. V. Future ocean warming threatens key photosynthetic microbes. Zenodo https://doi.org/10.5281/zenodo.11043386 (2024).


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *