Cheng, L. et al. New record ocean temperatures and related climate indicators in 2023. Adv. Atmos. Sci. https://doi.org/10.1007/s00376-024-3378-5 (2024).
Wang, G., Xie, S.-P., Huang, R. X. & Chen, C. Robust warming pattern of global subtropical oceans and its mechanism. J. Clim. 28, 8574–8584 (2015).
Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376, 524–526 (2022).
Bopp, L. et al. Potential impact of climate change on marine export production. Glob. Biogeochem. Cycles 15, 81–99 (2001).
Plattner, G.-K., Joos, F., Stocker, T. F. & Marchal, O. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B 53, 564–592 (2001).
Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. & Li, W. K. W. Increasing importance of small phytoplankton in a warmer ocean. Glob. Change Biol. 16, 1137–1144 (2010).
Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).
Richardson, T. L. Mechanisms and pathways of small-phytoplankton export from the surface ocean. Ann. Rev. Mar. Sci. 11, 57–74 (2019).
Marañón, E., Lorenzo, M. P., Cermeño, P. & Mouriño-Carballido, B. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. ISME J. 12, 1836–1845 (2018).
Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. A global pattern of thermal adaptation in marine phytoplankton. Science 338, 1085–1088 (2012).
Partensky, F. & Garczarek, L. Prochlorococcus: advantages and limits of minimalism. Ann. Rev. Mar. Sci. 2, 305–331 (2010).
Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).
Martiny, A. C. et al. Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnol. Oceanogr. 67, S378–S389 (2022).
Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).
Laws, E. A. Evaluation of in situ phytoplankton growth rates: a synthesis of data from varied approaches. Annu. Rev. Mar. Sci. 5, 247–268 (2013).
Swalwell, J. E., Ribalet, F. & Armbrust, E. V. Seaflow: a novel underway flow-cytometer for continuous observations of phytoplankton in the ocean. Limnol. Oceanogr. Methods 9, 466–477 (2011).
Ribalet, F. et al. SeaFlow data v1, high-resolution abundance, size and biomass of small phytoplankton in the North Pacific. Sci. Data 6, 277 (2019).
Mattern, J. P. et al. A Bayesian approach to modeling phytoplankton population dynamics from size distribution time series. PLoS Comput. Biol. 18, e1009733 (2022).
Hunter-Cevera, K. R. et al. Diel size distributions reveal seasonal growth dynamics of a coastal phytoplankter. Proc. Natl Acad. Sci. USA 111, 9852–9857 (2014).
Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl Acad. Sci. USA 112, 8008–8012 (2015).
Hunter-Cevera, K. R. et al. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science 354, 326–329 (2016).
Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. Proc. Natl Acad. Sci. USA 117, 12215–12221 (2020).
Grone, J. et al. A single Prochlorococcus ecotype dominates the tropical Bay of Bengal with ultradian growth. Environ. Microbiol. https://doi.org/10.1111/1462-2920.16605 (2024).
Agawin, N. S. R. & Agustí, S. Prochlorococcus and Synechococcus cells in the central Atlantic Ocean: distribution, growth and mortality (grazing) rates. Vie Milieu 55, 165–175 (2005).
Shalapyonok, A., Olson, R. J. & Shalapyonok, L. S. Ultradian growth in Prochlorococcus spp. Appl. Environ. Microbiol. 64, 1066–1069 (1998).
Worden, A. & Binder, B. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments. Aquat. Microb. Ecol. 30, 159–174 (2003).
Liu, K., Suzuki, K., Chen, B. & Liu, H. Are temperature sensitivities of Prochlorococcus and Synechococcus impacted by nutrient availability in the subtropical northwest Pacific? Limnol. Oceanogr. 66, 639–651 (2021).
Jiang, S. et al. Variations in physiology and genomic function of Prochlorococcus across the eastern Indian Ocean. J. Geophys. Res. Oceans 128, e2023JC019898 (2023).
Kuipers, B. R. & Witte, H. J. Prochlorophytes as secondary prey for heterotrophic nanoflagellates in the deep chlorophyll maximum layer of the (sub)tropical North Atlantic. Mar. Ecol. Prog. Ser. 204, 53–63 (2000).
Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).
Landry, M. R. et al. Microbial community biomass, production and grazing along 110° E in the eastern Indian Ocean. Deep Sea Res. 202, 105134 (2022).
Chen, B. et al. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnol. Oceanogr. 54, 1084–1097 (2009).
Chen, M., Liu, H. & Li, H. Effect of mesozooplankton feeding selectivity on the dynamics of algae in presence of intermediate grazers—a laboratory simulation. Mar. Ecol. Prog. Ser. 486, 47–58 (2013).
Brown, S. L. et al. Picophytoplankton dynamics and production in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Res. 46, 1745–1768 (1999).
Reckermann, M. & Veldhuis, M. Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquat. Microb. Ecol. 12, 263–273 (1997).
Casey, J. R., Lomas, M. W., Mandecki, J. & Walker, D. E. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 34, L10604 (2007).
Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).
Biller, S. J. et al. Environmental and taxonomic drivers of bacterial extracellular vesicle production in marine ecosystems. Appl. Environ. Microbiol. 89, e00594-23 (2023).
Zinser, E. R. et al. Influence of light and temperature on Prochlorococcus ecotype distributions in the Atlantic Ocean. Limnol. Oceanogr. 52, 2205–2220 (2007).
Smith, A. N. et al. Comparing Prochlorococcus temperature niches in the lab and across ocean basins. Limnol. Oceanogr. 66, 2632–2647 (2021).
Kremer, C. T., Thomas, M. K. & Litchman, E. Temperature- and size-scaling of phytoplankton population growth rates: reconciling the Eppley curve and the metabolic theory of ecology. Limnol. Oceanogr. 62, 1658–1670 (2017).
Anderson, S. I., Barton, A. D., Clayton, S., Dutkiewicz, S. & Rynearson, T. A. Marine phytoplankton functional types exhibit diverse responses to thermal change. Nat. Commun. 12, 6413 (2021).
Strauss, J. et al. The Bay of Bengal exposes abundant photosynthetic picoplankton and newfound diversity along salinity-driven gradients. Environ. Microbiol. 25, 2118–2141 (2023).
Follows, M. J. & Dutkiewicz, S. Modeling diverse communities of marine microbes. Annu. Rev. Mar. Sci. 3, 427–451 (2011).
Anderson, S. I. et al. Phytoplankton thermal trait parameterization alters community structure and biogeochemical processes in a modeled ocean. Glob. Change Biol. 30, e17093 (2024).
Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, e2111300118 (2021).
Barton, S. et al. Comparative experimental evolution reveals species-specific idiosyncrasies in marine phytoplankton adaptation to warming. Glob. Change Biol. 29, 5261–5275 (2023).
Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).
Labban, A., Shibl, A. A., Calleja, M. L., Hong, P.-Y. & Morán, X. A. G. Growth dynamics and transcriptional responses of a Red Sea Prochlorococcus strain to varying temperatures. Environ. Microbiol. 25, 1007–1021 (2023).
Alonso-Sáez, L. et al. Transcriptional mechanisms of thermal acclimation in Prochlorococcus. mBio 14, e03425-22 (2023).
Schiksnis, C. et al. Proteomics analysis reveals differential acclimation of coastal and oceanic Synechococcus to climate warming and iron limitation. Front. Microbiol. 15, 1323499 (2024).
Dedman, C. J., Barton, S., Fournier, M. & Rickaby, R. E. M. Shotgun proteomics reveals temperature-dependent regulation of major nutrient metabolism in coastal Synechococcus sp. WH5701. Algal Res. 75, 103279 (2023).
Britten, G. L. & Sibert, E. C. Enhanced fish production during a period of extreme global warmth. Nat. Commun. 11, 5636 (2020).
Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Change Biol. 27, 1196–1213 (2021).
Archibald, K., Dutkiewicz, S., Laufkötter, C. & Moeller, H. V. Thermal responses in global marine planktonic food webs are mediated by temperature effects on metabolism. J. Geophys. Res. https://doi.org/10.1029/2022JC018932 (2022).
Atkinson, A. et al. Steeper size spectra with decreasing phytoplankton biomass indicate strong trophic amplification and future fish declines. Nat. Commun. 15, 381 (2024).
Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).
Becker, J. W., Hogle, S. L., Rosendo, K. & Chisholm, S. W. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 13, 1506–1519 (2019).
Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).
Ashkezari, M. D. et al. Simons Collaborative Marine Atlas Project (Simons CMAP): an open-source portal to share, visualize, and analyze ocean data. Limnol. Oceanogr. Methods 19, 488–496 (2021).
Sosik, H. M., Olson, R. J., Neubert, M. G., Shalapyonok, A. & Solow, A. R. Growth rates of coastal phytoplankton from time-series measurements with a submersible flow cytometer. Limnol. Oceanogr. 48, 1756–1765 (2003).
Hamilton, M. et al. Dynamics of Teleaulax-like cryptophytes during the decline of a red water bloom in the Columbia River Estuary. J. Plankton Res. 39, 589–599 (2017).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Jones, C., Clayton, S., Ribalet, F., Armbrust, E. V. & Harchaoui, Z. A kernel-based change detection method to map shifts in phytoplankton communities measured by flow cytometry. Methods Ecol. Evol. 12, 1687–1698 (2021).
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L. & Gehlen, M. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geosci. Model Dev. 8, 2465–2513 (2015).
Global Ocean Biogeochemistry Analysis and Forecast. E.U. Copernicus Marine Service Information (CMEMS) https://doi.org/10.48670/moi-00015 (2021).
Grimaud, G. M., Mairet, F., Sciandra, A. & Bernard, O. Modeling the temperature effect on the specific growth rate of phytoplankton: a review. Rev. Environ. Sci. Biotechnol. 16, 625–645 (2017).
Bissinger, J. E., Montagnes, D. J. S., Sharples, J. & Atkinson, D. Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol. Oceanogr. 53, 487–493 (2008).
Mullen, K. M., Ardia, D., Gil, D. L., Windover, D. & Cline, J. DEoptim: an R package for global optimization by differential evolution. J. Stat. Softw. 40, 1–26 (2011).
Dutkiewicz, S. et al. Multiple biotic interactions establish phytoplankton community structure across environmental gradients. Limnol. Oceanogr. 69, 1086–1100 (2024).
Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).
Dutkiewicz, S. et al. Dimensions of marine phytoplankton diversity. Biogeosciences 17, 609–634 (2020).
Dutkiewicz, S. et al. Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model. Biogeosciences 12, 4447–4481 (2015).
Sokolov, A. P. et al. MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation (2005); https://dspace.mit.edu/handle/1721.1/29789
Monier, E., Scott, J. R., Sokolov, A. P., Forest, C. E. & Schlosser, C. A. An integrated assessment modeling framework for uncertainty studies in global and regional climate change: the MIT IGSM-CAM (version 1.0). Geosci. Model Dev. 6, 2063–2085 (2013).
Monier, E. et al. Toward a consistent modeling framework to assess multi-sectoral climate impacts. Nat. Commun. 9, 660 (2018).
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102, 5753–5766 (1997).
Sokolov, A. et al. Description and evaluation of the MIT Earth System Model (MESM). J. Adv. Model. Earth Syst. 10, 1759–1789 (2018).
Henson, S. A., Cael, B. B., Allen, S. R. & Dutkiewicz, S. Future phytoplankton diversity in a changing climate. Nat. Commun. 12, 5372 (2021).
Ribalet, F., Dutkiewicz, S., Monier, E. & Armbrust, E. V. Future ocean warming threatens key photosynthetic microbes. Zenodo https://doi.org/10.5281/zenodo.11043386 (2024).
Source link