Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
Zhang, Y. & Skolnick, J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 33, 2302–2309 (2005).
Van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).
Bileschi, M. L. et al. Using deep learning to annotate the protein universe. Nat. Biotechnol. 40, 932–937 (2022).
Gane, A. et al. ProtNLM: model-based natural language protein annotation. Preprint at https://storage.googleapis.com/brain-genomics-public/research/proteins/protnlm/uniprot_2022_04/protnlm_preprint_draft.pdf (2022).
Gligorijević, V. et al. Structure-based protein function prediction using graph convolutional networks. Nat. Commun. 12, 3168 (2021).
Zhou, N. et al. The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biol. 20, 1–23 (2019).
Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221–227 (2013).
Liu, W. et al. PLMSearch: protein language model powers accurate and fast sequence search for remote homology. Nat. Commun. 15, 2775 (2024).
Hong, L. et al. Fast, sensitive detection of protein homologs using deep dense retrieval. Nat. Biotechnol. 43, 983–995 (2025).
Achiam, J. et al. GPT-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).
Touvron, H. et al. LLaMA: open and efficient foundation language models. Preprint at https://arxiv.org/abs/2302.13971 (2023).
Touvron, H. et al. LLaMA 2: open foundation and fine-tuned chat models. Preprint at https://arxiv.org/abs/2307.09288 (2023).
Guo, D. et al. DeepSeek-R1: incentivizing reasoning capability in llms via reinforcement learning. Preprint at https://arxiv.org/abs/2501.12948 (2025).
Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 4348 (2022).
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
Elnaggar, A. et al. ProtTrans: toward understanding the language of life through self-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 7112–7127 (2021).
Zhou, X. et al. Decoding the molecular language of proteins with Evolla. Preprint at bioRxiv https://doi.org/10.1101/2025.01.05.630192 (2025).
Peng, F. Z. et al. PTM-Mamba: a PTM-aware protein language model with bidirectional gated Mamba blocks. Nat. Methods 22, 945–949 (2025).
Su, J. et al. SaProt: protein language modeling with structure-aware vocabulary. In Proc. 12th International Conference on Learning Representations (ICLR, 2024); https://openreview.net/forum?id=6MRm3G4NiU
Su, J. et al. SaprotHub: making protein modeling accessible to all biologists. Preprint at bioRxiv https://doi.org/10.1101/2024.05.24.595648 (2024).
Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 8748–8763 (PMLR, 2021).
Gu, Y. et al. Domain-specific language model pretraining for biomedical natural language processing. ACM Trans. Comput. Healthc. 3, 1–23 (2021).
Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).
UniProt Consortium UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).
Koehler Leman, J. et al. Sequence–structure–function relationships in the microbial protein universe. Nat. Commun. 14, 2351 (2023).
Todd, A. E., Orengo, C. A. & Thornton, J. M. Evolution of protein function, from a structural perspective. Curr. Opin. Chem. Biol. 3, 548–556 (1999).
Douze, M. et al. The Faiss library. Preprint at https://arxiv.org/abs/2401.08281 (2024).
Liu, S. et al. A text-guided protein design framework. Nat. Mach. Intell. 7, 580–591 (2025).
Xu, M., Yuan, X., Miret, S. & Tang, J. ProtST: multi-modality learning of protein sequences and biomedical texts. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 38749–38767 (PMLR, 2023).
Chen, J. et al. Global marine microbial diversity and its potential in bioprospecting. Nature 633, 371–379 (2024).
Hu, Z. et al. Discovery and engineering of small SlugCas9 with broad targeting range and high specificity and activity. Nucleic Acids Res. 49, 4008–4019 (2021).
Yu, T. et al. Enzyme function prediction using contrastive learning. Science 379, 1358–1363 (2023).
Kweon, J. et al. Efficient DNA base editing via an optimized DYW-like deaminase. Preprint at bioRxiv https://doi.org/10.1101/2024.05.15.594452 (2024).
Gherardini, P. F., Wass, M. N., Helmer-Citterich, M. & Sternberg, M. J. E. Convergent evolution of enzyme active sites is not a rare phenomenon. J. Mol. Biol. 372, 817–845 (2007).
Doolittle, R. F. Convergent evolution: the need to be explicit. Trends Biochem. Sci. 19, 15–18 (1994).
Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).
Pomaznoy, M., Ha, B. & Peters, B. GOnet: a tool for interactive Gene Ontology analysis. BMC Bioinformatics 19, 470 (2018).
Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).
He, Y. et al. Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing. Mol. Cell 84, 1257–1270 (2024).
Tong, H. et al. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Nat. Commun. 15, 4897 (2024).
Ye, L. et al. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat. Biotechnol. 42, 1538–1547 (2024).
Cornman, A. et al. The OMG dataset: an Open MetaGenomic corpus for mixed-modality genomic language modeling. In Proc. 13th International Conference on Learning Representations (ICLR, 2025); https://openreview.net/forum?id=jlzNb1iWs3
Kavli, B. et al. Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. 15, 3442–3447 (1996).
Hayes, T. et al. Simulating 500 million years of evolution with a language model. Science 387, 850–858 (2025).
Burley, S. K. et al. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res. 47, D464–D474 (2019).
Richardson, L. et al. MGnify: the microbiome sequence data analysis resource in 2023. Nucleic Acids Res. 51, D753–D759 (2023).
Pruitt, K. D., Tatusova, T., Brown, G. R. & Maglott, D. R. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).
Dai, F. et al. Toward de novo protein design from natural language. Preprint at bioRxiv https://doi.org/10.1101/2024.08.01.606258 (2024).
Liu, N. et al. Protein design with dynamic protein vocabulary. Preprint at https://arxiv.org/abs/2505.18966 (2025).
Kuang, J., Liu, N., Sun, C., Ji, T. & Wu, Y. PDFBench: a benchmark for de novo protein design from function. Preprint at https://arxiv.org/abs/2505.20346 (2025).
Ko, Young Su. Using ProTrek for protein binder design. Twitter https://x.com/youngsuko9/status/1865845977673834595 (2024).
Gitter, A. Using ProTrek to retrieve proteins with desired function. Twitter https://x.com/anthonygitter/status/1827760237194920435 (2024).
Gitter, A. Using ProTrek to retrieve proteins with desired function. Twitter https://x.com/anthonygitter/status/1813427191000035330 (2024).
Gitter, A. Using ProTrek to retrieve proteins with desired function. Twitter https://x.com/anthonygitter/status/1882642214624678193 (2025).
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).
van den Oord, A., Li, Y. & Vinyals, O. Representation learning with contrastive predictive coding. Preprint at https://arxiv.org/abs/1807.03748 (2018).
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) 4171–4186 (Association for Computational Linguistics, 2019).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Rasley, J., Rajbhandari, S., Ruwase, O. & He, Y. DeepSpeed: system optimizations enable training deep learning models with over 100 billion parameters. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (eds Gupta, R. & Liu, Y.) 3505–3506 (Association for Computing Machinery, 2020).
Loshchilov, I. and Hutter, F. Fixing weight decay regularization in Adam. OpenReview.net https://openreview.net/forum?id=rk6qdGgCZ (2018).
Loshchilov, I. & Hutter, F. SGDR: Stochastic gradient descent with warm restarts. In Proc. International Conference on Learning Representations (ICLR, 2017); https://openreview.net/forum?id=Skq89Scxx
Xu, J. et al. Protein inverse folding from structure feedback. Preprint at https://arxiv.org/abs/2506.03028 (2025).
Enzyme Nomenclature (Nomenclature Committee of the International Union of Biochemistry and Molecular Biology, 2024); https://iubmb.qmul.ac.uk/enzyme/
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
Kucera, T., Oliver, C., Chen, D., and Borgwardt, K. ProteinShake: building datasets and benchmarks for deep learning on protein structures. In Advances in Neural Information Processing Systems 36 (eds Oh, A. et al.) (NeurIPS, 2023).
Source link