Robot-assisted mapping of chemical reaction hyperspaces and networks

  • Skoraczyński, G. et al. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? Sci. Rep. 7, 3582 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saebi, M. et al. On the use of real-world datasets for reaction yield prediction. Chem. Sci. 14, 4997–5005 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z., Moroz, Y. S. & Isayev, O. The challenge of balancing model sensitivity and robustness in predicting yields: a benchmarking study of amide coupling reactions. Chem. Sci. 14, 10835–10846 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szymkuć, S., Wołos, A., Roszak, R. & Grzybowski, B. A. Estimation of multicomponent reactions’ yields from networks of mechanistic steps. Nat. Commun. 15, 10286 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Restrepo, G. Spaces of mathematical chemistry. Theory Biosci. 143, 237–251 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Rohrbach, S. et al. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 377, 172–180 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Slattery, A. et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, T. et al. Autonomous mobile robots for exploratory synthetic chemistry. Nature 635, 890–897 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347, 49–53 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davies, I. W. The digitization of organic synthesis. Nature 570, 175–181 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilbraham, L., Mehr, S. H. M. & Cronin, L. Digitizing chemistry using the chemical processing unit: from synthesis to discovery. Acc. Chem. Res. 54, 253–262 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mahjour, B. et al. Rapid planning and analysis of high-throughput experiment arrays for reaction discovery. Nat. Commun. 14, 3924 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. Y. et al. Identifying general reaction conditions by bandit optimization. Nature 626, 1025–1033 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Strieth-Kalthoff, F. et al. Artificial intelligence for retrosynthetic planning needs both data and expert knowledge. J. Am. Chem. Soc. 146, 11005–11017 (2024).

    CAS 

    Google Scholar
     

  • Stadler, E. et al. A versatile method for the determination of photochemical quantum yields via online UV-Vis spectroscopy. Photochem. Photobiol. Sci. 17, 660–669 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, J.-M. et al. Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10,000 reactions per day. Nat. Commun. 15, 8826 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bioucas-Dias, J. M. et al. Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5, 354–379 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Banert, K. & Kurnianto, A. Nucleophile substitution bei 4,4-dimethyl-2-adamantyl-substraten: rückseitenangriff bei 2-adamantan-derivaten. Chem. Ber. 119, 3826–3841 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Thibblin, A. & Sidhu, H. Mechanisms of competing solvolytic elimination and substitution reactions. The role of ion-pair intermediates in aqueous solvents. J. Chem. Soc., Perkin Trans. 2 2, 1423–1428 (1994).

    Article 

    Google Scholar
     

  • Clennan, E. L. Aromatic endoperoxides. Photochem. Photobiol. 99, 204–220 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klaper, M., Wessig, P. & Linker, T. Base catalysed decomposition of anthracene endoperoxide. Chem. Commun. 52, 1210–1213 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ammer, J., Sailer, C. F., Riedle, E. & Mayr, H. Photolytic generation of benzhydryl cations and radicals from quaternary phosphonium salts: how highly reactive carbocations survive their first nanoseconds. J. Am. Chem. Soc. 134, 11481–11494 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimae, Y., Kurata, H. & Oda, M. Arylbis(9-anthryl)methyl cations: highly crowded, near infrared light absorbing hydrocarbon cations. Angew. Chem. Int. Ed. 43, 4947–4950 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nojima, M., Takagi, M., Morinaga, M., Nagao, G. & Tokura, N. Reaction of some triarylmethyl radicals, polyarylalkenes, and 9,10-dihydro-9,10-epidioxyanthracenes with sulphur dioxide; detection of radicals and/or cations derived from the corresponding cation radicals. J. Chem. Soc. Perkin Trans. 1 5, 488–495 (1978).

    Article 

    Google Scholar
     

  • Hollenstein, S. & Laali, K. K. Efficient conversion of 9-isopropenylphenanthrene to 4,6,6-trimethyl-6H-benz[de]anthracene in FSO3H; 5,6-dihydro-4H-benzanthracen-4-ium ion and its charge delocalization mode. Chem. Commun. 2145–2146 (1997).

  • Cankařová, N., Nemec, I. & Krchňák, V. p-TSA-mediated four-component reaction: one-step access to mesoionic 1H-imidazol-3-ium-4-olates, direct NHC precursors. Adv. Synth. Catal. 364, 2996–3003 (2022).

    Article 

    Google Scholar
     

  • Medeiros, G. A. et al. Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). Chem. Commun. 50, 338–340 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rocha, R. O., Rodrigues, M. O. & Neto, B. A. D. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega 5, 972–979 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvim, H. G. O., da Silva Júnior, E. N. & Neto, B. A. D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Adv. 4, 54282–54299 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chéron, N., Ramozzi, R., Kaïm, L. E., Grimaud, L. & Fleurat-Lessard, P. Challenging 50 years of established views on Ugi reaction: a theoretical approach. J. Org. Chem. 77, 1361–1366 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Hantzsch, A. Condensationsprodukte aus Aldehydammoniak und ketonartigen Verbindungen. Ber. Dtsch. Chem. Ges. 14, 1637–1638 (1881).

    Article 

    Google Scholar
     

  • Shen, L. et al. A revisit to the Hantzsch reaction: unexpected products beyond 1,4-dihydropyridines. Green Chem. 11, 1414–1420 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Santos, V. G. et al. The multicomponent Hantzsch reaction: comprehensive mass spectrometry monitoring using charge-tagged reagents. Chem. Eur. J. 20, 12808–12816 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C.-C. et al. Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels CaV1.3 and CaV1.2. Bioorg. Med. Chem. 18, 3147–3158 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrenko-Kritschenko, P. Über die kondensation des acetondicarbonsäureesters mit aldehyden, ammoniak und aminen. J. Prakt. Chem. 85, 1–37 (1912).

    Article 

    Google Scholar
     

  • Singh, B. & Indra, A. Prussian blue- and Prussian blue analogue-derived materials: progress and prospects for electrochemical energy conversion. Mater. Today Energy 16, 100404 (2020).

    Article 

    Google Scholar
     

  • Li, W. et al. Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 15, 1900470 (2019).

    Article 

    Google Scholar
     

  • Choo, J. P. S. & Li, Z. Styrene oxide isomerase catalyzed Meinwald rearrangement reaction: discovery and application in single-step and one-pot cascade reactions. Org. Process Res. Dev. 26, 1960–1970 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, S. et al. Synthesis of trimetallic Prussian blue analogues and catalytic application for the epoxidation of styrene. Ind. Eng. Chem. Res. 59, 13831–13840 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Y. et al. Prussian blue analogues as heterogeneous catalysts for epoxidation of styrene. RSC Adv. 5, 17993–17999 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, L., Zhang, Z., He, X., Zhang, F. & Zhang, Z. Regulation of the products of styrene oxidation. Chem. Eng. Res. Des. 120, 171–178 (2017).

    Article 

    Google Scholar
     

  • Pal, A. et al. Finding thermodynamically favorable pathways in chemical reaction networks using flows in hypergraphs and mixed-integer linear programming. J. Chem. Inf. Model. 65, 6772–6787 (2025).

  • Grzybowski, B. A., Bishop, K. J. M., Kowalczyk, B. & Wilmer, C. E. The ‘wired’ universe of organic chemistry. Nat. Chem. 1, 31–36 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krzeszewski, M. et al. Computer-generated, mechanistic networks assist in assigning the outcomes of complex multicomponent reactions. J. Am. Chem. Soc. 147, 15636–15644 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mikulak-Klucznik, B., Klucznik, T., Beker, W., Moskal, M. & Grzybowski, B. A. Catalyst: curtailing the scalable supply of fentanyl by using chemical AI. Chem 10, 1319–1326 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mahjour, B., Shen, Y., Liu, W. & Cernak, T. A map of the amine–carboxylic acid coupling system. Nature 580, 71–75 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baltussen, M. G., de Jong, T. J., Duez, Q., Robinson, W. E. & Huck, W. T. S. Chemical reservoir computation in a self-organizing reaction network. Nature 631, 549–555 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wołos, A. et al. Computer-designed repurposing of chemical wastes into drugs. Nature 604, 668–676 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Halder, J. et al. Insight of solvent effect on CeO2 catalyzed oxidation of styrene with tert-butyl hydroperoxide: a combined experimental and theoretical approach. Catal. Commun. 164, 106413 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jia, Y. et al. Code and raw data for ‘Robot-assisted mapping of chemical reaction hyperspaces and networks’. Zenodo https://doi.org/10.5281/zenodo.14880579 (2025).

  • Schroeder, W., Martin, K. & Lorensen, B. The Visualization Toolkit: An Object-oriented Approach to 3D Graphics 4th edn (Kitware, 2006).

  • Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Article 
    MathSciNet 

    Google Scholar
     

  • Branch, M. A., Coleman, T. F. & Li, Y. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21, 1–23 (1999).

    Article 
    MathSciNet 

    Google Scholar
     

  • Du, M. et al. High‐entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium‐sulfur batteries. Angew. Chem. Int. Ed. 61, e202209350 (2022).

    Article 
    CAS 

    Google Scholar
     


  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *